
A Repository with 44 Years of Unix Evolution
Diomidis Spinellis

Department of Management Science and Technology
Athens University of Economics and Business

Patision 76, GR-104 34 Athens, Greece
Email: dds@aueb.gr

Abstract—The evolution of the Unix operating system is made
available as a version-control repository, covering the period
from its inception in 1972 as a five thousand line kernel, to
2015 as a widely-used 26 million line system. The repository
contains 659 thousand commits and 2306 merges. The repository
employs the commonly used Git system for its storage, and
is hosted on the popular GitHub archive. It has been created
by synthesizing with custom software 24 snapshots of systems
developed at Bell Labs, Berkeley University, and the 386BSD
team, two legacy repositories, and the modern repository of the
open source FreeBSD system. In total, 850 individual contributors
are identified, the early ones through primary research. The data
set can be used for empirical research in software engineering,
information systems, and software archaeology.

I. INTRODUCTION

The Unix operating system stands out as a major engi-
neering breakthrough due to its exemplary design, its numer-
ous technical contributions, its development model, and its
widespread use. The design of the Unix programming environ-
ment has been characterized as one offering unusual simplicity,
power, and elegance [1]. On the technical side, features that
can be directly attributed to Unix or were popularized by
it include [2]: the portable implementation of the kernel in
a high level language; a hierarchical file system; compatible
file, device, networking, and inter-process I/O; the pipes and
filters architecture; virtual file systems; and the shell as a
user-selectable regular process. A large community contributed
software to Unix from its early days [3], [4, pp. 65–72]. This
community grew immensely over time and worked using what
are now termed open source software development methods [5,
pp. 440-442]. Unix and its intellectual descendants have also
helped the spread of the C and C++ programming languages,
parser and lexical analyzer generators (yacc, lex), document
preparation tools (troff, eqn, tbl), scripting languages (awk,
sed, Perl), TCP/IP networking, and configuration management
systems (SCCS, RCS, Subversion, Git), while also forming a
large part of the modern internet infrastructure and the web.

Luckily, important Unix material of historical importance
has survived and is nowadays openly available. Although Unix
was initially distributed with relatively restrictive licenses, the

In MSR ’15: Proceedings of the 12th Working Conference on Mining
Software Repositories, pages 13–16. IEEE, 2015.

Copyright c©2015 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

most significant parts of its early development have been
released by one of its right-holders (Caldera International)
under a liberal license. Combining these parts with software
that was developed or released as open source software by the
University of California, Berkeley and the FreeBSD Project
provides coverage of the system’s development over a period
ranging from June 20th 1972 until today.

Curating and processing available snapshots as well as
old and modern configuration management repositories allows
the reconstruction of a new synthetic Git repository that
combines under a single roof most of the available data. This
repository documents in a digital form the detailed evolution
of an important digital artefact over a period of 44 years.
The following sections describe the repository’s structure and
contents (Section II), the way it was created (Section III), and
how it can be used (Section IV).

II. DATA OVERVIEW

The 1GB Unix history Git repository is made available
for cloning on GitHub.1 Currently2 the repository contains
659 thousand commits and 2306 merges from about 850
contributors. The contributors include 23 from the Bell Labs
staff, 158 from Berkeley’s Computer Systems Research Group
(CSRG), and 660 from the FreeBSD Project.

The repository starts its life at a tag identified as Epoch,
which contains only licensing information and its modern
README file. Various tag and branch names identify points
of significance.

• Research–VX tags correspond to six research editions that
came out of Bell Labs. These start with Research–V1
(4768 lines of PDP-11 assembly) and end with Research–
V7 (1820 mostly C files, 324kLOC).

• Bell-32V is the port of the 7th Edition Unix to the
DEC/VAX architecture.

• BSD–X tags correspond to 15 snapshots released from
Berkeley.

• 386BSD–X tags correspond to two open source versions
of the system, with the Intel 386 architecture kernel code
mainly written by Lynne and William Jolitz.

• FreeBSD–release/X tags and branches mark 116 releases
coming from the FreeBSD project.

1https://github.com/dspinellis/unix-history-repo
2Updates may add or modify material. To ensure replicability the reposi-

tory’s users are encouraged to fork it or archive it.

0

5

10

15

V6 V7 B41 B42 B43 BN2 3B1 F1 F2 F4 F52 F8 F9

Unix release

L
in

e
s
 o

f
c
o
d
e
 (

m
ill

io
n
s
)

Code provenance

F9 — FreeBSD 9.0

F8 — FreeBSD 8.0

F52 — FreeBSD 5.2

F4 — FreeBSD 4.0

F2 — FreeBSD 2.0

F1 — FreeBSD 1.0

3B1 — 386BSD 0.1

BN2 — BSD 4.3 Net/2

B43 — BSD 4.3

B42 — BSD 4.2

B41 — BSD 4.1

V7 — Research Version 7

V6 — Research Version 6

Fig. 1. Code provenance across significant Unix releases.

In addition, branches with a –Snapshot–Development suffix
denote commits that have been synthesized from a time-
ordered sequence of a snapshot’s files, while tags with a –
VCS–Development suffix mark the point along an imported
version control history branch where a particular release
occurred.

The repository’s history includes commits from the earliest
days of the system’s development, such as the following.
commit c9f643f59434f14f774d61ee3856972b8c3905b1
Author: Dennis Ritchie <research!dmr>
Date: Mon Dec 2 18:18:02 1974 -0500

Research V5 development
Work on file usr/sys/dmr/kl.c

Merges between releases that happened along the system’s
evolution, such as the development of BSD 3 from BSD 2 and
Unix 32/V, are also correctly represented in the Git repository
as graph nodes with two parents.

More importantly, the repository is constructed in a way that
allows git blame, which annotates source code lines with the
version, date, and author associated with their first appearance,
to produce the expected code provenance results. For example,
checking out the BSD–4 tag, and running git blame on the
kernel’s pipe.c file will show lines written by Ken Thompson
in 1974, 1975, and 1979, and by Bill Joy in 1980. This allows
the automatic (though computationally expensive) detection of
the code’s provenance at any point of time.

As can be seen in Figure 1, a modern version of Unix
(FreeBSD 9) still contains visible chunks of code from BSD
4.3, BSD 4.3 Net/2, and FreeBSD 2.0. Interestingly, the Figure
shows that code developed during the frantic dash to create
an open source operating system out of the code released by
Berkeley (386BSD and FreeBSD 1.0) does not seem to have
survived. The oldest code in FreeBSD 9 appears to be an 18-

Snapshot
import

VCS
import

V1 V3 V4 V5 V6 V7

BSDy1

Unixy32FV

BellyLabs

BSDy3

Berkeley

BSDy2

BSDySCCS

BSDy48G BSDy481 BSDy482 BSDy483 BSDy483)Tahoe BSDy483)Reno BSDy484

BSDy484yLite1

BSDy484yLite2

BSDy483yNetF1 BSDy483yNetF2

Openysource
uincludingyBerkeleyc

386BSDyG8G

FreeBSDy1yCVS

386BSDyG81

FreeBSDyGit

Fig. 2. Imported Unix snapshots, repositories, and their mergers.

line sequence in the C library file timezone.c, which can
also be found in the 7th Edition Unix file with the same name
and a time stamp of January 10th, 1979 — 36 years ago.

III. DATA COLLECTION AND PROCESSING

The goal of the project is to consolidate data concerning
the evolution of Unix in a form that helps the study of the
system’s evolution, by entering them into a modern revision
repository. This involves collecting the data, curating them,
and synthesizing them into a single Git repository.

The project is based on three types of data (see Figure 2).
First, snapshots of early released versions, which were
obtained from the Unix Heritage Society archive,3 the CD-
ROM images containing the full source archives of CSRG,4 the
OldLinux site,5 and the FreeBSD archive.6 Second, past and
current repositories, namely the CSRG SCCS [6] repository,
the FreeBSD 1 CVS repository, and the Git mirror of modern
FreeBSD development.7 The first two were obtained from the
same sources as the corresponding snapshots.

The last, and most labour intensive, source of data was
primary research. The release snapshots do not provide
information regarding their ancestors and the contributors of
each file. Therefore, these pieces of information had to be
determined through primary research. The authorship infor-
mation was mainly obtained by reading author biographies,
research papers, internal memos, and old documentation scans;
by reading and automatically processing source code and
manual page markup; by communicating via email with people
who were there at the time; by posting a query on the Unix
StackExchange site; by looking at the location of files (in early
editions the kernel source code was split into usr/sys/dmr

3http://www.tuhs.org/archive sites.html
4https://www.mckusick.com/csrg/
5http://www.oldlinux.org/Linux.old/distributions/386BSD
6http://ftp-archive.freebsd.org/pub/FreeBSD-Archive/old-releases/
7https://github.com/freebsd/freebsd

and /usr/sys/ken); and by propagating authorship from
research papers and manual pages to source code and from
one release to others. (Interestingly, the 1st and 2nd Research
Edition manual pages have an “owner” section, listing the
person (e.g. ken) associated with the corresponding system
command, file, system call, or library function. This section
was not there in the 4th Edition, and resurfaced as the “Author”
section in BSD releases.) Precise details regarding the source
of the authorship information are documented in the project’s
files that are used for mapping Unix source code files to
their authors and the corresponding commit messages. Finally,
information regarding merges between source code bases was
obtained from a BSD family tree maintained by the NetBSD
project.8

The software and data files that were developed as part of
this project, are available online,9 and, with appropriate net-
work, CPU and disk resources, they can be used to recreate the
repository from scratch. The authorship information for major
releases is stored in files under the project’s author-path
directory. These contain lines with a regular expressions for a
file path followed by the identifier of the corresponding author.
Multiple authors can also be specified. The regular expressions
are processed sequentially, so that a catch-all expression at the
end of the file can specify a release’s default authors. To avoid
repetition, a separate file with a .au suffix is used to map au-
thor identifiers into their names and emails. One such file has
been created for every community associated with the system’s
evolution: Bell Labs, Berkeley, 386BSD, and FreeBSD. For the
sake of authenticity, emails for the early Bell Labs releases are
listed in UUCP notation (e.g. research!ken). The FreeBSD
author identifier map, required for importing the early CVS
repository, was constructed by extracting the corresponding
data from the project’s modern Git repository. In total the
commented authorship files (828 rules) comprise 1107 lines,
and there are another 640 lines mapping author identifiers to
names.

The curation of the project’s data sources has been codified
into a 168-line Makefile. It involves the following steps.

a) Fetching: Copying and cloning about 11GB of images,
archives, and repositories from remote sites.

b) Tooling: Obtaining an archiver for old PDP-11
archives from 2.9 BSD, and adjusting it to compile under
modern versions of Unix; compiling the 4.3 BSD compress
program, which is no longer part of modern Unix systems, in
order to decompress the 386BSD distributions.

c) Organizing: Unpacking archives using tar and cpio;
combining three 6th Research Edition directories; unpacking
all 1 BSD archives using the old PDP-11 archiver; mounting
CD-ROM images so that they can be processed as file systems;
combining the 8 and 62 386BSD floppy disk images into two
separate files.

d) Cleaning: Restoring the 1st Research Edition kernel
source code files, which were obtained from printouts through

8http://ftp.netbsd.org/pub/NetBSD/NetBSD-current/src/share/misc/
bsd-family-tree

9https://github.com/dspinellis/unix-history-make

optical character recognition, into a format close to their
original state; patching some 7th Research Edition source code
files; removing metadata files and other files that were added
after a release, to avoid obtaining erroneous time stamp in-
formation; patching corrupted SCCS files; processing the early
FreeBSD CVS repository by removing CVS symbols assigned
to multiple revisions with a custom Perl script, deleting CVS
Attic files clashing with live ones, and converting the CVS
repository into a Git one using cvs2svn.

An interesting part of the repository representation is how
snapshots are imported and linked together in a way that allows
git blame to perform its magic. Snapshots are imported into
the repository as sequential commits based on the time stamp
of each file. When all files have been imported the repository
is tagged with the name of the corresponding release. At that
point one could delete those files, and begin the import of
the next snapshot. Note that the git blame command works
by traversing backwards a repository’s history, and using
heuristics to detect code moving and being copied within or
across files. Consequently, deleted snapshots would create a
discontinuity between them, and prevent the tracing of code
between them.

Instead, before the next snapshot is imported, all the files
of the preceding snapshot are moved into a hidden look-aside
directory named .ref (reference). They remain there, until all
files of the next snapshot have been imported, at which point
they are deleted. Because every file in the .ref directory
matches exactly an original file, git blame can determine
how source code moves from one version to the next via
the .ref file, without ever displaying the .ref file. To
further help the detection of code provenance, and to increase
the representation’s realism, each release is represented as a
merge between the branch with the incremental file additions
(–Development) and the preceding release.

For a period in the 1980s, only a subset of the files devel-
oped at Berkeley were under SCCS version control. During that
period our unified repository contains imports of both the SCCS
commits, and the snapshots’ incremental additions. At the
point of each release, the SCCS commit with the nearest time
stamp is found and is marked as a merge with the release’s
incremental import branch. These merges can be seen in the
middle of Figure 2.

The synthesis of the various data sources into a single
repository is mainly performed by two scripts. A 780-line Perl
script (import-dir.pl) can export the (real or synthesized)
commit history from a single data source (snapshot directory,
SCCS repository, or Git repository) in the Git fast export
format. The output is a simple text format that Git tools
use to import and export commits. Among other things, the
script takes as arguments the mapping of files to contributors,
the mapping between contributor login names and their full
names, the commit(s) from which the import will be merged,
which files to process and which to ignore, and the handling
of “reference” files. A 450-line shell script creates the Git
repository and calls the Perl script with appropriate arguments
to import each one of the 27 available historical data sources.

● ●

●

●

●●

●

●

● ●

●
●

●
●

● ●

●

●
●

●

●●

●

●

● ●
●

●

●

●

●

●

●
●

●

0

3

6

9

1980 1990 2000 2010
Mean date of release's files

V
al

ue
 (

se
e

le
ge

nd
)

● Mean filename length

Mean identifier length

Comments per 100 lines

% of goto statements

"register" keywords per 100 lines

Fig. 3. Code style evolution along Unix releases.

The shell script also runs 30 tests that compare the repository
at specific tags against the corresponding data sources, verify
the appearance and disappearance of look-aside directories,
and look for regressions in the count of tree branches and
merges and the output of git blame and git log. Finally, git is
called to garbage-collect and compress the repository from its
initial 6GB size down to the distributed 1GB.

IV. DATA USES

The data set can be used for empirical research in software
engineering, information systems, and software archeology.
Through its unique uninterrupted coverage of a period of more
than 40 years, it can inform work on software evolution and
handovers across generations. With thousandfold increases in
processing speed and million-fold increases in storage capacity
during that time, the data set can also be used to study
the co-evolution of software and hardware technology. The
move of the software’s development from research labs, to
academia, and to the open source community can be used
to study the effects of organizational culture on software
development. The repository can also be used to study how
notable individuals, such as Turing Award winners (Dennis
Ritchie and Ken Thompson) and captains of the IT industry
(Bill Joy and Eric Schmidt), actually programmed. Another
phenomenon worthy of study concerns the longevity of code,
either at the level of individual lines, or as complete systems
that were at times distributed with Unix (Ingres, Lisp, Pascal,
Ratfor, Snobol, TMG), as well as the factors that lead to code’s
survival or demise. Finally, because the data set stresses Git,
the underlying software repository storage technology, to its
limits, it can be used to drive engineering progress in the field
of revision management systems.

Figure 3, which depicts trend lines (obtained with R’s local
polynomial regression fitting function) of some interesting
code metrics along 36 major releases of Unix, demonstrates
the evolution of code style and programming language use
over very long timescales. This evolution can be driven by
software and hardware technology affordances and require-
ments, software construction theory, and even social forces.
The dates in the Figure have been calculated as the average
date of all files appearing in a given release. As can be seen
in it, over the past 40 years the mean length of identifiers and
file names has steadily increased from 4 and 6 characters to
7 and 11 characters, respectively. We can also see less steady
increases in the number of comments and decreases in the use
of the goto statement, as well as the virtual disappearance of
the register type modifier.

V. FURTHER WORK

Many things can be done to increase the repository’s faith-
fulness and usefulness. Given that the build process is shared
as open source code, it is easy to contribute additions and fixes
through GitHub pull requests. The most useful community
contribution would be to increase the coverage of imported
snapshot files that are attributed to a specific author. Currently,
about 90 thousand files (out of a total of 160 thousand) are
getting assigned an author through a default rule. Similarly,
there are about 250 authors (primarily early FreeBSD ones)
for which only the identifier is known. Both are listed in the
build repository’s unmatched directory, and contributions
are welcomed. Furthermore, the BSD SCCS and the FreeBSD
CVS commits that share the same author and time-stamp can be
coalesced into a single Git commit. Support can be added for
importing the SCCS file comment fields, in order to bring into
the repository the corresponding metadata. Finally, and most
importantly, more branches of open source systems can be
added, such as NetBSD OpenBSD, DragonFlyBSD, and illumos.
Ideally, current right holders of other important historical Unix
releases, such as System III, System V, NeXTSTEP, and SunOS,
will release their systems under a license that would allow their
incorporation into this repository for study.

Acknowledgements
The author thanks the many individuals who contributed to the

effort. Brian W. Kernighan, Doug McIlroy, and Arnold D. Robbins
helped with Bell Labs login identifiers. Clem Cole, Era Eriksson,
Mary Ann Horton, Kirk McKusick, Jeremy C. Reed, Ingo Schwarze,
and Anatole Shaw helped with BSD login identifiers. The BSD SCCS
import code is based on work by H. Merijn Brand and Jonathan Gray.

This research has been co-financed by the European Union (Eu-
ropean Social Fund — ESF) and Greek national funds through the
Operational Program “Education and Lifelong Learning” of the Na-
tional Strategic Reference Framework (NSRF) — Research Funding
Program: Thalis — Athens University of Economics and Business
— Software Engineering Research Platform.

REFERENCES

[1] M. D. McIlroy, E. N. Pinson, and B. A. Tague, “UNIX time-sharing
system: Foreword,” The Bell System Technical Journal, vol. 57, no. 6,
pp. 1899–1904, July-August 1978.

[2] D. M. Ritchie and K. Thompson, “The UNIX time-sharing system,” Bell
System Technical Journal, vol. 57, no. 6, pp. 1905–1929, July-August
1978.

[3] D. M. Ritchie, “The evolution of the UNIX time-sharing system,” AT&T
Bell Laboratories Technical Journal, vol. 63, no. 8, pp. 1577–1593, Oct.
1984.

[4] P. H. Salus, A Quarter Century of UNIX. Boston, MA: Addison-Wesley,
1994.

[5] E. S. Raymond, The Art of Unix Programming. Addison-Wesley, 2003.
[6] M. J. Rochkind, “The source code control system,” IEEE Transactions

on Software Engineering, vol. SE-1, no. 4, pp. 255–265, 1975.

