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Abstract—Introduction: The establishment of the Mining Soft-
ware Repositories (MSR) Data Showcase conference track has
encouraged researchers to provide more data sets as a basis for
further empirical studies.
Objectives: Examine the usage of the data papers published in
the MSR proceedings in terms of use frequency, users, and use
purpose.
Methods: Data track papers were collected from the MSR Data
Showcase and through the manual inspection of older MSR
proceedings. The use of data papers was established through
citation searching followed by reading the studies that have
cited them. Data papers were then clustered based on their
content, whereas their citations were classified according to the
knowledge areas of the Guide to the Software Engineering Body
of Knowledge.
Results: We found that 65% of the data papers have been used
in other studies, with a long-tail distribution in the number of
citations. MSR data papers are cited less than other MSR papers.
A considerable number of the citations stem from the teams that
authored the data papers. Publications providing repository data
and metadata are the most frequent data papers and the most
often cited ones. Mobile application data papers are the least
common ones, but the second most frequently cited.
Conclusion: Data papers have provided the foundation for a
significant number of studies, but there is room for improvement
in their utilization. This can be done by setting a higher bar for
their publication, by encouraging their use, and by providing
incentives for the enrichment of existing data collections.

Index Terms—Software engineering data; Bibliometrics; Data
paper; Reproducibility; Data showcase track
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“Indeed, one of my major complaints about the
computer field is that whereas Newton could say,
‘If I have seen a little farther than others, it is
because I have stood on the shoulders of giants,’
I am forced to say, ‘Today we stand on each other’s
feet.’ Perhaps the central problem we face in all
of computer science is how we are to get to the
situation where we build on top of the work of
others rather than redoing so much of it in a trivially
different way.”

— Richard Wesley Hamming1

I. INTRODUCTION

Software engineering data sets are often a key ingredient
for performing empirical software engineering by testing a
hypothesis through an experiment run on such data [16]. They
can be used to empirically evaluate software product quality
and development process attributes and also to create or verify
estimation models [47]. In addition, publicly available data
sets can help researchers perform so-called exact replications
of existing studies and thus address potential internal validity
problems [79]. These, in contrast to conceptual replications,
which follow an independently developed experimental proce-
dure, attempt to control as many factors of the original study
as possible, varying almost no (in dependent replications)
or only some (in independent replications) conditions of the
experiment [79].

Yet, at least in the past, data sets for software engineering
research were small in size and difficult to obtain [43].
The situation has improved over the past decades with the
emergence of open source software [90]. For this reason
researchers have collaborated [16] through various initiatives
to develop data set repositories, such as the International
Conference on Predictive Models and Data Analytics for
Software Engineering (PROMISE), or to promote the sharing
and publication of data, as through the US National Institute
of Standards and Technology’s “Error, Fault, and Failure Data
Collection and Analysis Project” [92], the Mining Software
Repositories (MSR) conference data showcase track, or the
awesome-msr GitHub project.2

11968 ACM Turing Award Lecture [36]
2https://github.com/dspinellis/awesome-msr



The MSR data showcase track, established in 2013, aims
at encouraging the research community to develop, share, and
document software engineering research data sets. In the words
of the 2013 MSR conference chairs [105],

“rather than describing research achievements, data
papers describe datasets curated by their authors
and made available to others. Such papers provide
description of the data, including its source; method-
ology used to gather it; description of the schema
used to store it, and any limitations and/or challenges
of this data set.”

In the past decade tens of data set papers have been
published in the MSR conference. Given the effort that went
into creating the data sets and publishing the corresponding
papers, it is reasonable to investigate what the outcome has
been. This study aims to answer the question by examining
the usage of the data papers published in the MSR proceedings
in terms of use frequency, users, and use purpose. The study’s
contributions are:

• the systematic collection of research that has been based
on MSR data papers,

• the categorization of the subjects tackled using MSR data
papers, and

• the quantitative analysis of the MSR data papers’ impact.
In the following Section II we describe our study’s methods.
We then present our results in Section III, discuss them in Sec-
tion IV, and outline the associated validity threats in Section V.
The study is complemented by an overview of related work in
Section VI, followed by our conclusions in Section VII. The
data sets associated with our study (data papers, citing papers,
categorizations, MSR papers, and citations) are made available
online.3

II. METHODS

We framed our investigation on the usage of MSR data
papers in terms of the following research questions.

RQ1 What data papers have been published? We answer
this by finding all data papers published in the
MSR proceedings, and further elaborate by classify-
ing them based on the year of publication and the
content.

RQ2 How are data papers used? We answer this by
collecting all citations to MSR data papers and clas-
sifying them according to their subject and authors.

RQ3 What is the impact of published data papers? We
answer this through the statistical analysis and visu-
alization of the citations and their slicing according
to their type.

A. Data Paper Collection and Clustering

To perform the particular research, we first obtained all
data papers of the proceedings of the International (Working)
Conference on Mining Software Repositories (MSR). By the
term data papers we refer to all papers included in the data

3http://doi.org/10.5281/zenodo.2544957

TABLE I
MSR DATA PAPERS BY YEAR

Year Data Papers
2005 [80] [55] [15]
2006 [41]
2010 [61]
2012 [40]

2013 [8] [18] [28] [89] [91] [38] [50] [83] [57] [12] [84] [46] [30]
[70] [35]

2014 [44] [76] [32] [58] [66] [102] [72] [48] [9] [22] [31] [95] [20]
[56] [6]

2015 [88] [77] [62] [45] [25] [4] [81] [94] [53] [7] [39] [65] [68]
[101] [34] [29]

2016 [69] [2] [85] [99] [5] [104] [63]
2017 [59] [1] [103] [73] [73] [74] [97]

2018 [52] [100] [60] [24] [96] [75] [64] [98] [82] [23] [13] [51] [78]
[26] [19]

showcase track of the MSR proceedings, as well as other papers
from older proceedings that primarily provide a data set (e.g.
Conklin et al.’s collection of FLOSS data and analyses [15]).

To acquire the aforementioned papers, we searched through
the programs of the MSR conferences on their respective
website. Programs that contained an explicit Data Showcase
section immediately informed us of the particular year’s data
papers. In contrast, programs that did not include the fore-
named section, were manually searched for potential research
offering data sets. From the gathered studies, those which
genuinely offered complete data sets were included in our data
paper archive. In total we identified the 81 data papers shown
in Table I.

Following the collection, we classified the data papers into
distinct clusters. This classification would provide us with a
different perspective on the analysis of the papers.

We manually sorted all data research into different cate-
gories in the way described further on. The first data paper in
order was assigned into the first category. The second paper
was semantically compared to the first one; if any conceptual
relation was recognized between them, then they were grouped
together. Otherwise, the second paper was placed in a new
category. The procedure continued accordingly; all papers
were classified into existing clusters in case of conceptual
relation, or into new clusters when no association with the
existing categories was noted. Eventually, a set of seven
categories was formed, as presented in Table II.

B. Data Paper Use Identification and Classification

To conduct the analysis on the data paper research usage, we
implemented the Identification of Research and Study Selection
processes, as proposed in Kitchenham’s work on procedures
for performing systematic reviews [42].

The Identification of Research was made through widely
used and established platforms that provide citation data:
Google Scholar,4 Scopus—Elsevier’s abstract and citation
database5 and the ACM Digital Library.6 Most research papers

4https://scholar.google.com/
5https://www.scopus.com/
6https://dl.acm.org/



TABLE II
DATA PAPER CATEGORIES AND CITATIONS

Category Data Papers Cited DPs Non-cited DPs Citation Ratio (%) Citations
Repository Data & Metadata 26 17 9 65 255
Bugs, Defects, Smells 17 10 7 59 36
Software Evolution 12 8 4 67 18
Software Development Process 9 6 3 67 30
Computing Education, Programming Practices & Skills 7 5 2 70 17
Human-centered Data 6 3 3 50 18
Mobile Application Data & Metadata 4 4 0 100 66
Total 81 53 28 65 440

that were not publicly available were provided to us through
personal communication with the authors.

After collecting the citations of a particular data paper, we
followed the Study Selection process. Specific criteria were
applied to the collected research, in order to ensure quality
and validity for our analysis. First, we applied the whitelisting
practice and kept studies of conferences’ proceedings, articles,
master’s and doctoral theses, books, and technical reports.
Studies published in multiple venues were only listed once.
Priority was given sequentially to books, articles, proceedings,
reports, and, lastly, theses. We additionally decided to retain
studies written in the English language, due to its widespread
adoption for scientific communication.

The main criterion for retaining citing studies was their use
of the data sets of the papers they had cited. We term these
strong citations. Research that solely referred to a data paper
without using its data set was not taken into account in our
study. A representative example of a non-strong citation is
the study of repository badges in the npm ecosystem [87],
which has cited the collection of social diversity attributes of
programmers [88], although it has not used its data.

To determine the most cited data papers, we counted for
each research paper its total strong citations and sorted them
in descending order (see Table III).

Furthermore, we classified the collected strong citations
according to the knowledge areas of the Guide to the Soft-
ware Engineering Body of Knowledge [11] (SWEBOK—see
Table IV).

During the collection of the strong citations, we noticed that
some studies shared at least one author with the data paper
they had cited. For these data studies, we divided their strong
citations into three categories. The first category contains
references to the data papers made by their first author. The
second category includes citations made by at least one co-
author of the respective data paper. The remaining references
that were not made by any author of the particular data paper
were placed in the third category.

C. Citation Analysis

To assess in an objective manner the impact of data papers
compared to other MSR papers we collected all MSR papers
and coupled them with citation data provided by Scopus.
This process differs from the one described in the preceding
Section II-B, because citations are not manually evaluated

regarding actual use, and are retrieved only from a single
source (Scopus). Consequently, the collected metrics are only
appropriate for assessing relative rather than absolute impact.

We first created a data set of all 1267 MSR papers by
downloading the complete DBLP computer science bibliog-
raphy database,7 and filtering its XML records to obtain only
those whose booktitle tag contained MSR. We split the MSR
papers at hand into two sets: data papers (as determined in
Section II-A) and the rest. We also split the MSR papers by
year to simplify the selection of samples.

As citations and data papers are unevenly distributed over
the years (see Figure 1), we created a collection mirroring the
yearly distribution of data papers in order to compare in a fair
manner citations to data papers against citations to other MSR
papers. We created this collection as follows. For each year in
which N data papers were published, we randomly chose N
non-data papers from the MSR papers published in the same
year.

To assess research building on data papers we also created
a set of MSR papers that cite MSR data papers. We did this
by calculating the intersection between all MSR papers and the
papers that use them (as determined in Section II-B). Although
this new set of papers citing data papers is not exhaustive (it
only contains MSR papers), it allows us to compare the citation
metrics of these papers against those of a known tractable
population, namely MSR papers as a whole.

We then used the Scopus REST API to obtain the number of
times each MSR paper was cited. The citation data obtained
in this step are not comparable with those we obtained
through the widespread search and manual filtering described
in Section II-B, because they may be associated with false
positives and false negatives. However, they allow comparisons
to be made between different MSR sets, because all citation
metrics are obtained through the same methods employed by
Scopus and all probably suffer through the same types of bias.

Finally, we joined the Scopus citation data with the sets
obtained in the previous steps. We then calculated simple
descriptive statistics for the citation counts of the following
sets:

• all MSR data papers,
• a sample of MSR non-data papers mirroring the yearly

distribution of data papers,

7https://dblp.org/



TABLE III
TOP FIVE DATA PAPERS IN NUMBER OF CITATIONS

Title Data Paper Year Category Citations
The GHTorent Dataset and Tool Suite [30] 2013 Repository Data & Metadata 165
AndroZoo: Collecting Millions of Android Apps for the Research Community [2] 2016 Mobile Application Data & Metadata 57
Lean GHTorrent: GitHub Data on Demand [31] 2014 Repository Data & Metadata 24
Who Does What During a Code Review? Datasets of OSS Peer Review Repositories [35] 2013 Software Development Process 16
The Maven Repository Dataset of Metrics, Changes, and Dependencies [70] 2013 Repository Data & Metadata 12
The Eclipse and Mozilla Defect Tracking Dataset: A Genuine Dataset for Mining Bug Information [46] 2013 Bugs, Defects, Smells 12
The Emotional Side of Software Developers in JIRA [63] 2016 Human-centered Data 12
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Fig. 1. Timeline of the data papers and the strong citations. Each year depicts
the number of data papers published in the particular year and the number of
studies published in the particular year that are based on any data paper.

• all MSR non-data papers for years in which data papers
were published, and

• MSR papers citing MSR data papers.

III. RESULTS

We examined all 81 identified data papers, which comprise
about 15% of the 507 papers published in the MSR conference
in the years when data papers appeared. The MSR data papers
are associated with 1169 citations to them, coming from 982
distinct studies. Out of the 1169 citations, 440 (419 distinct
studies) use the data sets provided by the data papers. The
remaining 729 citations (610 distinct studies) refer to data
papers without utilizing the particular data sets. Six citations
were received from their respective authors through personal
communication, as stated in Section II-B, but no access was
provided for another three. (These three studies have been
excluded from the total citations.)

The timeline of the data studies and the research based on
them is depicted in Figure 1. For each year, the number of
published data papers is showcased, along with the number
of studies published the particular year, which have been
based on any data paper. There has been a significant rise
in the number of data papers since 2013, which is the year
when the data showcase track was founded [105]. Until then,
2005 was the year with the most data studies recognized. The
smallest number of data showcase research papers—seven—

was published in 2016 and 2017. Nevertheless, 2018 indicates
a double increase in data publications—15 (see Table I).

From the classification of the data papers, as described in
Section II-A, seven data categories emerged. Table II shows
for each category the number of data papers it comprises, the
number of strongly cited and non-cited data papers, and the
references that have been made to them. We consider as non-
cited the data papers with either non-strong citations or no
citations at all. The categories are sorted in descending order
of data papers.

Repository Data & Metadata preponderate. The particular
category consists of 26 studies that provide raw or processed
data, along with descriptive statistics and analyses. The collec-
tion of Java source code of the Merobase Component Finder
project [38] is part of this category.

Bugs, Defects, Smells concern security failures, software
inconsistencies and unfavorable programming practices de-
tected in a variety of software applications and ecosystems. For
instance, VulinOSS offers a data set of security vulnerabilities
in open-source systems [26].

Software Evolution involves twelve collections with in-
formation on the evolution of artifacts such as operating
systems [82], software products [103], or frameworks [91].

Nine data papers were grouped together due to their com-
mon intention of assisting developers in ordinary development
practices, such as maintenance [18] and verification [35].
These papers constitute the Software Development Process
category.

Papers that shared records regarding novices’ and experts’
programming practices and abilities (e.g. the list of Scratch
programs of students [1]) were classified in Computing Educa-
tion, Programming Practices & Skills. The aim of this category
is to facilitate studies on Computing Education.

The class of Human-centered Data is composed of data
papers that concentrate on the social aspect [88] and the
emotional side of developers [63].

The last category we defined is the Mobile Application Data
& Metadata, which shares collections of Android applications
and meta-information [45]. Only four papers represent this
category, however their second-in-order number of strong
citations attests their significance and their differentiation from
the other classes.

According to our analysis on the strong citations to data
papers (see Table III), Gousios’s collection of GitHub repos-
itory data [30] is the most cited study with a total of 165
uses, followed by the AndroZoo collection of Android ap-



TABLE IV
AREAS OF CITING STUDIES

SWEBOK Knowledge Area Studies Percentage
Software Quality 119 28.4
Software Maintenance 65 15.5
Software Engineering Process 41 9.8
Software Configuration Management 38 9.1
Software Engineering Management 37 8.8
Software Construction 33 7.9
Software Engineering Professional Practice 33 7.9
Software Engineering Models and Methods 21 5.0
Software Testing 16 3.8
Software Design 11 2.6
Software Requirements 4 1.0
Software Engineering Economics 1 0.2

plications [2] with 57 citations. GHTorrent’s complementing
work, Lean GHTorrent [31], and the peer review data set [35]
have also attracted the attention of the research community.
Finally, the repository of Maven meta-information [70], along
with the collections of Eclipse and Mozilla defects [46] and
developers’ sentiments [63] share the same number of uses—
twelve.

Overall, 53 MSR data papers (65%) have been utilized (by
their authors or others), while 28 papers’ data sets have never
been used. The majority of them belong to the categories of
Repository Data & Metadata and Bugs, Defects, Smells. The
unused number of data sets is noteworthy, considering the
effort required to produce them.

The categorization of the studies based on data papers ac-
cording to the knowledge areas of the SWEBOK (see Table IV)
suggests that research on Software Quality and Software
Maintenance uses data papers to a considerable extent. On
the other hand, only a slight portion of research on Software
Requirements and Software Engineering Economics uses data
showcase papers.

Furthermore, concerning the use of data papers by their
respective authors, our findings show that 37 papers have been
referenced by the teams that authored them. Specifically, 15
studies have been solely deployed either by their first author
or his co-authors. Figure 3 depicts for each data paper cited at
least once by the first author or the co-authors, the percentage
of the uses that stem from the first author, the co-authors,
and other unrelated teams. The data papers are sorted in
ascending order based on the percentage of the sum of the
strong citations made by the first author and the co-authors.
For instance, 67% of the references to the collection of APIs
usage information [77] were made by the first author.

The impact of published data papers can be deduced from
Table V, which compares citations to data and non-data papers.
(The three data papers missing from the table are those
published in MSR ’05, which are not tracked by Scopus.) The
table shows that data papers are typically cited less often,
compared to others of the MSR conference in terms of the
median and average number of references. This occurs both
in terms of yearly-weighted samples and as a whole. Also,
MSR papers that cite data papers appear to be cited about the

TABLE V
CITATION METRICS BY PAPER TYPE

Metric Data Papers Non-DP Non-DP Citing DP
(Sample) (All)

N 78 78 429 49
Min 0 0 0 0
Max 158 107 306 147
Median 5 10 8 10
Avg 9.8 16.9 17.0 15.7
Stddev 19.9 21.7 27.7 25.3

TABLE VI
VENUES WITH RESEARCH BASED ON DATA PAPERS

Venue Papers Percentage
MSR 52 13.8
ICSE 24 6.4
CoRR 21 5.6
ICSME 16 4.2
SANER 14 3.7
EmpSE 13 3.4
ESEM 6 1.6
IEEE TSE 6 1.6
Other conference 176 46.7
Other journal 49 13.0

same as other MSR papers.
Table VI shows the venues where research that is based

on data papers has been published. We see that more than
a third of the corresponding papers are published in top-tier
conferences and journals. This showcases the high quality of
research that is conducted based on data papers. We examined
by hand the papers published in the Computing Research
Repository (CoRR), and found that almost all of them (19)
are fairly recent (published in 2017 or 2018). This indicates
that they are probably archival submissions of material that
will eventually also end up in a conference or journal.

The timeline of the data paper uses is depicted in Figure 1.
The strong citations of all data papers were summed up and
illustrated as yearly records. We see that citations have risen
since 2014, which was expected after the data showcase track’s
introduction in 2013. Only six studies were identified before
the category’s establishment.

In addition, we studied the growth of data paper use in
a five-year window after the data papers’ publication. The
limit five was preferred because it provided us with sufficient
insight, without excluding too many papers that were less
than five years old. Consequently, we included data studies
published in the years 2005–2014. The majority of them reveal
a peak in the number of strong citations during the second year
of their existence, but appear to have a significant decrease of
uses the following year (see Figure 2). Research based on data
papers seems to plateau after the third year of their life.

IV. DISCUSSION

As evidenced by the large increase in the published data
papers since the MSR data showcase track was formalized, it
is apparent that the track has catalyzed the publication of data
papers. With data papers being more than 15% of the MSR
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Fig. 2. Timeline of strong citations to data papers published from 2005–2014
over a five-year window. Each cited data paper is represented with the same
color along the years.

publications, it is clear that the MSR data track has spurred a
new type of publication yielding each year a notable number
of studies. More generally, the data track’s success in driving
the publication of data papers indicates that a suitably themed
conference track can in some cases drive research toward a
given direction.

The categories of data papers (Table II) span equally prod-
uct and process, but product-oriented papers outnumber the
process ones. This can be explained by the preponderance of
publicly available product data, which is associated with open
source software projects, over process data, which is more
difficult to come by. To overcome this bias it might be worth
to focus the MSR call for data papers on specific topics each
year, although past experience with calling for the publication
of particular data types has not been encouraging [92].

The studies that cite data papers span the SWEBOK knowl-
edge areas fairly unequally. It seems that software quality
and maintenance can be profitably studied using materials
from MSR data papers, but software design, requirements,
and economics less so. Given the, by definition, primary
importance of all SWEBOK areas, it would seem that the MSR
data showcase track chairs could promote studies associated
with the less covered areas by adjusting the track’s call for
papers to specifically invite data sets targeting them. We
acknowledge, however, that for certain SWEBOK areas, such
as software economics, the release of data sets is hard due
to the often proprietary nature of the corresponding data.
Nevertheless, data sets for underrepresented SWEBOK areas
might really have lasting impact in their subfield despite being
less popular.

With each data paper cited on average 5.4 times, it appears
that data papers are in general useful for conducting other
empirical studies. Many of these studies are published in top-
notch venues (see Table VI), indicating the high quality of
studies that can be performed through data papers. On the
other hand, at least for MSR papers that cite data papers, their

basis on published empirical data does not seem to increase
their impact in terms of citations to them (see last column of
Table V).

Regarding impact, the number of strong citations to data
papers is constantly rising (Figure 1), indicating that the
concept of data papers has long-term value. The enduring
usefulness of specific data papers is also apparent by looking at
the timeline of strong citations to specific MSR data showcase
papers over a five-year period (Figure 2). The trend of the
most cited papers retaining their citation number or obtaining
ever more citations is yet another manifestation of the Matthew
effect in science [54]. A survey or interview study of authors of
data papers or research based on them might provide insights
on what motivates authors to conduct data research and the
reasons why particular data sets are more frequently preferred.

Yet, surprisingly for an artifact whose main purpose is for
others to build on, data papers are cited significantly less than
other MSR papers. One might think that this is due to the 28
out of 81 (35%) of the data papers that are never strongly
used. The citation’s distribution long tail—just 9% of the data
papers are cited by 67% of all citing studies—could be another
reason. However, by comparing the distribution of citations to
data papers (according to Scopus) with that of citations to non-
data papers (Figure 4), we see that the two distributions are
similar in shape. It is apparent that the reason for the lower
citation count of MSR data papers is the overall lower number
of citations to each data paper compared to the citations to
each non-data paper.

There are two reasons that could explain this phenomenon.
First, data papers may not publish data that is actually useful
for conducting other studies. To address this problem the MSR
program committee could adopt more stringent criteria for
accepting data papers, though this will certainly lead to a
decline in the number of accepted papers, and there is no
guarantee that a more selective track will still select the papers
that will be most frequently cited. The track’s toughening of
data sharing can be counterbalanced by promoting open sci-
ence initiatives, such as the ACM Artifact Review and Badging
policy [10]. Second, software engineering researchers may be
reluctant to use data stemming from MSR data papers in their
research. Reasons behind this could be mistrust in the data’s
quality [49], difficulty to use the data, the researchers’ reluc-
tance to work with data coming outside their organization—
also known as the not invented here syndrome [67], or a
fear that working with publicly available data is less likely
to yield original results. The high number of papers used by
their authors (Figure 3) corroborates this second reason.

Although one might also expect that a data paper is typically
only cited mainly when it is actually used, our findings do
not support this assertion. We manually identified 440 strong
citations; far fewer than half of the 1169 total citations that
were made to data papers according to our results. This
demonstrates that citations to any kind of published studies
(including data research) can be made for a variety of reasons:
to set the context, to replicate a method, to describe related
work, or even to set a given study apart from unrelated work.
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Fig. 4. Distribution in the number of citations to MSR data papers (left) and non-MSR data papers (right)

V. THREATS TO VALIDITY

The study’s external validity in terms of generalizability,
obviously suffers by studying only data papers that have been
published within the framework of the MSR conference and
ignoring venues such as the PROMISE conference (consider
e.g. reference [21]) or the Empirical Software Engineering
(e.g. reference [86]). However, studying the MSR conference
in isolation allowed us to analyze the effect of establishing
the MSR data showcase track, and to compare citation counts
among different groups of papers (Section II-C), without the
bias associated with a paper’s publication venue.

The major threats to the study’s internal validity stem
from the steps where we followed manual processes involving

subjective judgment: the selection of data papers before the
showcase track was introduced, the filtering of studies that
actually use data papers, the clustering of data papers, and the
categorization of studies using data papers. The trustworthi-
ness of all these could be improved by having them performed
by multiple raters and calculating statistics regarding interrater
reliability.

Apart from subjective judgment regarding assignment to
specific categories, the clustering of data papers introduced
in Table II holds another serious threat associated with the
establishment of the categories themselves. As elaborated in
Section II-A, categories resulted from a conceptual analysis
of the corresponding data studies. The validity risk associated



with the particular process could be handled through the
use of multiple raters, as stated above, and also through the
implementation of topic analysis, followed by clustering using,
for example, machine learning methods. Particularly, topic
analysis could be used to infer the subject of study of each data
paper, while machine learning clustering would provide insight
regarding the accuracy of the categories that were formed by
hand, by comparing them to the ones produced automatically.

VI. RELATED WORK

A variety of evaluations have been conducted through re-
search analysis. We recognize two major fields of evaluations:
surveys and bibliometrics. Surveys review and summarize
previously published studies of a particular topic through
qualitative analysis. Webster and Watson [93] have authored a
thorough guide on writing high quality literature reviews. On
the other hand, bibliometrics are statistical analyses of written
publications. We consider our work part of the bibliometric
research, and to the best of our knowledge, we are the first to
conduct a quantitative review of data paper usage.

A first step regarding bibliometric research in the field
of software engineering models was made in 2004 [16] by
the organisers of the PROMISE workshop, in their attempt
“to strengthen the community’s faith in software engineering
models”. Authors of such models were asked to submit, along
with their work, a related data set to the PROMISE repository.

Many individuals have also carried out interesting quan-
titative research on various topics. Robles [71] conducted
bibliometric research on papers that contained experimental
analyses of software projects and were published in the MSR
proceedings from 2004–2009. His objective was to review
their potential replicability. The outcome proves that MSR
authors prefer publicly available data sources from free soft-
ware repositories. However, the amount of publicly available
processed data collections then was very low, a fact we also
stated in our results. Concerning replicability, Robles found
that only a limited number of publications are replication
friendly.

Liebchen and Shepperd [49] performed a different quanti-
tative analysis on data sets. Their aim was to assess quality
management techniques used by authors when producing data
collections. They found that a surprisingly small percentage of
studies take data quality into consideration. The authors of this
work stress the need for more quality data rather than quantity
data. To achieve this, they advise researchers to provide clear
description of the procedures they follow prior to their analysis
and data archiving. They also encourage the use of automated
tools for assessing quality and the use of sensitivity analysis.

Another related publication is Cheikhi and Abran’s [14]
survey on data repositories. They noticed that the lack of
structured documentation of PROMISE and ISBSG repositories
impeded researchers’ attempts to find specific types of data
collection. To address this problem, they supplemented these
data collections with additional information such as the subject
of the study, the availability of data files and of further de-
scriptions, and also their usefulness for benchmarking studies.

Information on the subject of study was retrieved after the
classification of the data studies based on the subject, reflecting
our data paper classification.

In the field of Systems and Software Engineering, the five-
year study of Glass and Chen [27] assesses scholars and
institutions based on the number of papers they have published
in related journals. Their results indicate that the high-ranked
institutions are mainly academes, most of which are located
in the United States. The rest are from the Asia-Pacific region
and lastly, Europe. The leading institution of this list is the
Carnegie Mellon University, and the top scholar is Khaled El
Emam of the Canadian National Research Council.

A second evaluation of the ISBSG software project reposi-
tory was carried out by Almakadmeh and Abran [3]. Their pur-
pose was to assess the repository from Six Sigma measurement
perspective and correlate this assessment with software defect
estimation. They found that the ISBSG MS-Excel data extract
contains a high ratio of missing data within the fields related
to the total number of defects. They consider this outcome a
serious challenge, especially for studies that use the particular
data set for software defect estimation purposes.

The analysis on the Search Based Software Engineering
(SBSE) publications [17] is the first bibliometric research of
this community, covering a ten-year list of studies, from 2001–
2010. The evaluation is concentrated on the categories of Pub-
lication, Sources, Authorship, and Collaboration. Estimations
of various publication metrics are included for the following
years. Along with the metric forecasting, the authors also
studied the applicability of bibliometric laws in SBSE, such
as Bradfords and Lotka.

In the same context, Harman et al. [37] assessed research
trends, techniques and their applications in SBSE. They classi-
fied literature of SBSE, in order to extract specific knowledge
on distinct areas of study. Then they performed a trend
analysis, which supplied them with information on activity in
these areas. Finally, for each area of study, they recognize and
present opportunities for further improvement, and avenues for
supplementary research.

The work of Gu in [33] is another interesting bibliometric
analysis. The main point of evaluation in this study is the
productivity of authors in the field of knowledge management
(KM). To conduct the analysis, Gu collected articles published
in the (former) ISI Web of Science from 1975–2004. He
then recorded all unique productive authors, along with their
contribution and authorship position, in order to examine
their productivity and degree of involvement in their research
publications. The results indicate that 86% of authors have
only written one publication. As far as citation frequency
is concerned, Gu proves its significant correlation with the
reputation of the journal it has been published to. On the
other hand, his findings reveal no correlation between R&D
expenditures and research productivity or citation counts.

VII. CONCLUSIONS

The MSR data showcase track has been successful in encour-
aging the publication of data papers. Data papers are generally



used by other empirical studies, though not as much as one
might expect or hope for. The gatekeepers of science, such
as journal editors and program committees, can address this
by setting a higher bar for the publication of data papers and
by encouraging their use. An additional policy to improve the
use and impact of data papers might be to provide incentives
for researchers to enrich existing collections of data instead
of reproducing similar data sets from scratch. Such incentives
could involve awarding a most influential data paper award or
inviting papers where researchers describe how they expanded
upon a data track study.
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Ordóñez Matamoros. Gentoo package dependencies over time. In
Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR ’14, pages 404–407, New York, NY, USA, 2014.
ACM.

[10] Ronald F. Boisvert. Incentivizing reproducibility. Commun. ACM,
59(10):5–5, September 2016.

[11] Pierre Bourque and Richard E. Fair, editors. Guide to the Software
Engineering Body of Knowledge. IEEE Computer Society, New York,
version 3.0 edition, 2014. Available online http://www.swebok.org.

[12] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. IN-
VocD: Identifier name vocabulary dataset. In Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR ’13, pages
405–408, Piscataway, NJ, USA, 2013. IEEE Press.

[13] Kyriakos C. Chatzidimitriou, Michail D. Papamichail, Themistoklis
Diamantopoulos, Michail Tsapanos, and Andreas L. Symeonidis. npm-
miner: An infrastructure for measuring the quality of the npm registry.
In Proceedings of the 15th International Conference on Mining Soft-
ware Repositories, MSR ’18, pages 42–45, New York, NY, USA, 2018.
ACM.

[14] Laila Cheikhi and Alain Abran. PROMISE and ISBSG Software
Engineering data repositories: A survey. In Proceedings of the Joint
Conference of the 23rd International Workshop on Software Measure-
ment and the 8th International Conference on Software Process and
Product Measurement, IWSM-Mensura ’13, pages 17–24, Piscataway,
NJ, USA, October 2013. IEEE Press.

[15] Megan Conklin, James Howison, and Kevin Crowston. Collaboration
using OSSmole: A repository of FLOSS data and analyses. In
Proceedings of the 2nd International Workshop on Mining Software
Repositories, MSR ’05, pages 1–5, New York, NY, USA, 2005. ACM.

[16] B. Cukic. Guest editor’s introduction: The promise of public software
engineering data repositories. IEEE Software, 22(6):20–22, November
2005.

[17] Fabrı́cio Gomes de Freitas and Jerffeson Teixeira de Souza. Ten years
of Search Based Software Engineering: A bibliometric analysis. In
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