
Component Mining: A Process and its Pattern Language

Diomidis Spinellis and Konstantinos Raptis
Department of Information and Communication Systems

University of the Aegean
Greece

email: dspin@aegean.gr

Abstract

An important issue in a component-based software develop-
ment process is the supply source of mature, reliable, adapt-
able, and maintainable components. We define as compo-
nent mining the deliberate, organised, and automated pro-
cess of extracting reusable components from an existing
rich software base and present a pattern language used for
mining components from programs that are typically ex-
ecuted as non-interactive autonomous processes. We de-
scribe the patters in terms of intent, motivation, applicabil-
ity, structure, participants, consequences, and implementa-
tion. Based on the pattern language, we describe the imple-
mentation of a set of COM components that encapsulate the
Unix filters and an exemplar application that uses them.

Keywords

Component mining, pattern language, Unix tools, reuse.

1 Introduction

The increasing adoption of the object-oriented paradigm
in conjunction with recognised shortfalls of “pure” object-
oriented development [6, p. 30] and recent technology ad-
vances such as Enterprise JavaBeans and ActiveX have gen-
erated renewed interest in component-based software en-
gineering [4]. Object-oriented design and implementation
allows the composition of systems using pre-packaged soft-
ware components [15] while technologies such as CORBA,
ActiveX, and JavaBeans provide the necessary framework
for constructing such systems.

Information and Software Technology, 42(9):609–617, June 2000.
This is a machine-readable rendering of a working paper draft that led

to a publication. The publication should always be cited in preference to
this draft using the reference in the previous footnote. This material is
presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copy-
right holders. All persons copying this information are expected to adhere
to the terms and constraints invoked by each author’s copyright. In most
cases, these works may not be reposted without the explicit permission of
the copyright holder.

A component can be defined as “a physical and replace-
able part of a system that conforms to and provides the real-
isation of a set of interfaces” [2, p. 20]. More concretely, a
software component can be defined as a unit of composition
with contractually specified interfaces and explicit context
dependencies only; it can be deployed independently and
is subject to third-party composition [22]. Components, in
common with objects, encapsulate state, allow access to it
through separately described interfaces, and support modu-
lar design based on separation of concerns. However, com-
ponents differ from objects in a number of ways: they can
be implemented in different languages, they are often pack-
aged in binary containers, they can encapsulate multiple ob-
jects, and are typically more robustly packaged than objects
[24].

An important issue in a component-based software de-
velopment process is the supply-source of mature, reliable,
adaptable, and maintainable components. We define as
component mining the deliberate, organised, and automated
process of extracting reusable components from an exist-
ing component-rich software base. Component mining is a
product and process reuse activity [14] that relies on the ex-
ploration and exploitation of large pre-existing component-
rich fields [20]. Effective component mining is supported
by a clearly defined, and possibly automated, process for
identifying and packaging the software components.

The remainder of this paper is structured as follows: in
section 2 we describe our mining field which consists of ma-
ture, filter-style programs available as open source in many
Unix implementations; in section 3 we present a pattern lan-
guage [1] used for mining components from programs that
are typically executed as non-interactive autonomous pro-
cesses, and in section 4 we provide a case study on how
the components were implemented using a partly automated
process. Section 5 concludes the paper with a brief evalu-
ation of our approach and our plans for further work. The
pipe and filter model and component-based software engi-
neering is not a new idea; see for example [19, 13] (dis-
cussing pipe and filter architectures), [15, 6, 22] (discussing
component-based development) and the references therein.
The main contributions of this paper are the description of

1



component mining using a pattern language, the proposal
to repackage Unix filter-style programs as components, and
the presentation of a partly-automated mining process based
on a domain-specific language.

2 The Mining Field

The mining field and at the same time our motivation source
for defining the patterns we describe consists of the numer-
ous user and system programs available under the Unix op-
erating system implementations. Based on the Unix tool-
centred philosophy software developers have created a large
collection of programs that provide a single service (e.g.
compare two files, search for a pattern, deliver mail) with-
out requiring user interaction. Many of those programs are
implemented using state-of-the-art algorithms, have been
stress-tested in many diverse applications for decades, and
have their interface and operation standardised under efforts
such as POSIX[10]. In addition, many of these programs are
freely available in source code form through Open Source
initiatives such as GNU and BSD. In fact, many of the social
processes that have contributed to the success of mathemat-
ical theorems as a scientific communication vehicle [8] ap-
ply to this class of programs. Many of these programs have
been:

documented, published, and reviewed in source code
form,

discussed, internalised, generalised, and paraphrased,
and

used for solving real problems often in conjunction
with other programs.

The above factors are responsible for the creation of a rich
base of mature, reliable, standardised, and maintainable
component candidates.

One can argue that these programs have always been used
as components connected together using one of the Unix
shells. Although this statement is in a weak sense true,
current technological trends call for a component model a
lot richer than the one provided by the Unix shell. Sys-
tems using ActiveX or JavaBeans components are based on
object-oriented programming languages, can provide a va-
riety of efficient component composition approaches [25],
are often integrated with GUI environments, and are sup-
ported by modern program development environments. In
contrast, the Unix shells lack facilities for programming in
the large, support only the serial pipe composition model,
are designed for character-based terminals, do not provide
compilation support, and offer only rudimentary debugging
facilities. Therefore, a process for packaging existing pro-
grams as object components can elevate the individual reuse
of specific algorithms or implementations into an organised
component mining operation.

Component
Requirements

Interfacing
Requirements

Component
Encapsulation

Component
Glue
Implementation

Component
Use and
CompositionReuse

Mine

Build

Exploration Excogitation Exploitation

Figure 1: The component mining and exploitation process.

3 The Process and its Pattern Lan-
guage

Given a set of component requirements and their resulting
interfacing requirements, the process of component mining
and subsequent use within an application domain is func-
tionally and temporally divided into the three phases illus-
trated in Figure 1. These phases roughly correspond to the
selection, specialisation, and integration dimensions of typ-
ical software reuse methodologies [12]. During the explo-
ration phase component requirements are elicited, and com-
ponents are selected based on the existing component ab-
stractions of the mining field. In addition, the selected com-
ponents and the system architecture determine the corre-
sponding interfacing requirements. The excogitation phase
deals with the encapsulation of the components that have
to be mined, and the implementation of suitable connectors
for joining the components together and glue for interfacing
components with the rest of the system. The abstract nature
of packaged components and interfaces means that many of
them can be stored in a repository for future reuse, or re-
trieved from this repository for direct reuse. Finally, during
the exploitation phase the reused and newly encapsulated
components and corresponding interfaces are used to create
a functioning system.

The three activities that form the excogitation and ex-
ploitation phases concern the design and implementation of
concrete artefacts. These activities are:

Component encapsulation An existing standalone pro-
gram is converted into a component object.

Glue and connector implementation Special-purpose
glue components provide a uniform and reusable in-
terfacing mechanism between the mined components
and the rest of the system. In addition, connectors may
need to be built to interface the mined components
with each other [6, p. 454].

Component use and composition Component objects are

2



combined to form new structures and components.

These activities are essentially solutions to problems occur-
ring repeatedly in the context of component mining. By
giving each activity a concrete name, describing the prob-
lem it addresses and its context, outlining the solution’s el-
ements and relationships, and analysing the activity’s con-
sequences we are creating a pattern language of the com-
ponent mining process. It is therefore appropriate to de-
scribe these activities by means of the three corresponding
design patterns. These patterns do not depend on the un-
derlying component framework or the mined programs and
can therefore be used to integrate arbitrary tool-type pro-
grams to object frameworks such as ActiveX, JavaBeans,
and CORBA. In the following paragraphs we describe each
pattern by roughly following the format used Gamma et al
[9]. Thus, for every pattern we:

provide the name that will be used to describe it in our
component mining process vocabulary and classify it
as creational, behavioural, or structural,

illustrate the design problem that provides our motiva-
tion to use the pattern,

outline the situations where that pattern can be applied,

provide a graphic representation of the pattern’s
classes,

list the classes and objects participating in the pattern,

describe how the pattern supports its objectives, and

provide prescriptive guidelines towards the pattern’s
implementation.

3.1 Component Encapsulation — Creational

Intent

Component encapsulation creates a component object out
of a standalone non-interactive program.

Motivation

Encapsulating the multitude of powerful and mature stan-
dalone programs as component objects makes them usable
within modern object-based frameworks.

Applicability

All programs lacking mandatory user interaction can be en-
capsulated using this pattern. Particularly elegant is the en-
capsulation of filter style programs which transform a data
stream into another. Programs requiring limited character-
based user interaction can be encapsulated using a suitable
wrapper, while programs with a graphical front-end are in
most cases poor candidates for encapsulation.

Encapsulated
Component

SetStdIn()
SetStdOut()
SetStdErr()
Run()
Executing()

Sort

bool caseInsensitive
bool numeric
bool reverse

Diff

SetInputA()
SetInputB()

bool caseInsensitive
bool ignoreSpaces
bool outputContext

Figure 2: Component encapsulation object diagram.

Structure

Encapsulated components process input data streams gen-
erating output streams typically based on parameters that
modify their behaviour. As an example, the diff compo-
nent (an encapsulated version of the Unix command with
the same name) processes two textual input streams gener-
ating as output a third stream containing their differences.
Its parameters specify inter alia the handling of white space,
the output format, and the algorithm to use.

As shown in Figure 2 every encapsulated component pro-
vides a set of standard methods. These methods specify the
component’s interconnection. The SetStd*() methods are
used to set the component’s input and output streams. In ad-
dition, most components will offer component-specific in-
stance methods and variables to specify particular program
options such as the recipient of a mail message for a mail
transfer agent, or the collating sequence order for a sorting
component. In order to maximise the component composi-
tion flexibility, parameters that are associated with files in
the original programs can be changed to methods used to
specify streams in the encapsulated component. These can
then be arbitrarily and efficiently connected to a variety of
data sources and sinks. Once all component parameters are
set the component’s Run() method is called to specify that
its operation can commence. Since most components exe-
cute asynchronously, they provide the Executing() method
to allow a program to wait until a component’s operation
has completed.

3



Participants

Encapsulated components are typically connected with the
rest of the program and other components using glue com-
ponent objects.

Consequences

The encapsulation of a stand-alone program as a compo-
nent makes it directly usable in modern object-based frame-
works. The specification of a standard component class al-
lows repetitive aspects of the encapsulation to be reused and
can even be used to automate the encapsulation; at the cost
of having a generic component interface. In addition, the
generic specification of data sources and sinks as streams
allows the composition of encapsulated components using
sophisticated topologies that can not be typically imple-
mented using the Unix shells. Furthermore, the component
encapsulation allows the system implementor to experiment
with different component implementations which may vary
in terms of performance, cost, licensing restrictions, and re-
source usage.

Implementations

A large number of implementation possibilities spans vary-
ing levels of implementation cost and efficiency. Com-
ponents implemented as separate system processes using
a wrapper approach offer a quick way to prototype this
approach at a cost of reduced efficiency. Thread-based
implementations conforming with a component frame-
work’s structuring conventions offer increased efficiency at
a higher implementation cost. A thread-based implementa-
tion can advantageously use wrapper libraries to transform
existing operating system call primitives to interfaces to the
encapsulation code. Finally, hypermedia technologies can
be used to integrate a component’s documentation with its
encapsulated implementation [7].

3.2 Glue and Connector Implementation —
Behavioural

Intent

Glue is used to interface components with the rest of the
system while Connectors are used to interface components
with each other.

Motivation

The primary data flow mechanism of all components is a
stream. Apart from singular options controlling an encap-
sulated component’s operation the bulk of the data is trans-
ferred to and from the component through streams. Typical
streams are formed from the standalone program’s standard
input and output as well as any other user-specified files. To

Glue/Connector
Component

GetSource()
GetSink()

Pipe File

Open()
Close()

string fileName
enum accessMode

IteratorSource

First()
Next()
IsDone()
CurrentItem()

CurrentItem

Figure 3: Component glue object diagram.

use a component effectively these streams need to be con-
nected to existing data sources and sinks such as in-memory
data structures, files, relational databases, procedures pro-
ducing dynamic data, GUI widgets, and other components.
These connections are handled by the glue components.

Applicability

A glue component class needs to be designed whenever a
new type of an existing data source or sink needs to be
linked to an encapsulated component. In addition, compo-
nent connectors are used to provide functionality for linking
components together and for providing additional features
such as the scattering or gathering of multiple data streams.

Structure

As shown in Figure 3, glue components typically offer
source and sink data streams. The streams they return can
be used as arguments to a component’s SetStd* methods to
connect a component to a specific stream. The glue com-
ponent classes offer additional class-specific methods and
variables to specify for example the connection attributes
and SQL string for a database source or the methods for
accessing iterator-based data structures. Most glue com-
ponents act either as data sources or as data sinks. The
pipe connector component provides both a source and a
sink stream. Data written to the sink stream appears on the
source stream; pipes are typically used to link together dif-
ferent components.

Participants

Glue components connect encapsulated components with
the rest of the system while connectors are used to interface

4



components of the same family between them.

Consequences

The provision of glue components allows the deep inte-
gration of encapsulated components within an object-based
framework. Suitable glue components can be used to pro-
vide clear and efficient interfaces to system data obviating
the cumbersome file-based approaches typically used to in-
terface standalone programs. The existence of glue compo-
nents allows the designer to experiment with different data
sources and sinks without having to modify the rest of the
system structure.

Implementations

Although straightforward, the implementation of connec-
tors and glue components is intimately bound to the imple-
mentation technique used for the corresponding encapsu-
lated components. Process-based encapsulation techniques
dictate the implementation of streams and glue compo-
nents using file descriptors, pipes, and filesystem-visible
file descriptors. On the other hand, thread-based encapsu-
lation implementations direct towards connectors and glue
components based on a shared-buffer producer-consumer
model.

3.3 Component Composition — Structural

Intent

The component composition pattern identifies the primary
methods of encapsulated component composition and inte-
gration.

Motivation

Encapsulated components do not operate in a vacuum. They
are composed to create more powerful components and
integrated within an object-based system to provide spe-
cialised services. Moreover, composition of encapsulated
components with component glue can be used to provide
efficient access to off-line data, graphical user interfaces,
and a multitude of other component-based services. As an
example a spelling checker can be easily constructed by
composing the translate, sort, unique, and common compo-
nents, while the gluing of a editbox and listbox components
can be used to provide a GUI front end.

Applicability

Many of the problems solved under the Unix program-
ming environment using shell programming constructs and
pipelines can be transformed to component composition
structures. Of particular relevance are sequences of filter
type components, where each one receives a data stream,

User
Dictionary

System
Dictionary

GUI EditBox

Translate Sort Unique Common

EditBox
Source

Merge ListBox
Sink

GUI ListBox

Glue
Glue

Connector

Figure 4: A spell checker with a GUI.

performs some operations on it, and forwards it to another
filter to perform some other operations. Examples include
pipelines of tools that process text, images, sound, and ob-
ject code. Meunier [13] describes a complete pattern lan-
guage for a “Pipes and Filters Architecture” that can be used
as a base to structure applications.

Structure

Figure 4 depicts the component interaction diagram of a
filter-based spell checker built from Unix-mined and glue
components. The text to be spell-checked is retrieved from
the GUI edit box using a data source glue component. It is
transformed into a list of words using the translate compo-
nent which is a direct equivalent of the Unix tr command.
The word list is then transformed into a sorted list of unique
words using the sort and unique components which corre-
spond to the Unix sort and uniq commands. At the same
time, the system dictionary and a user dictionary are passed
using appropriate file connectors to the merge component
which merges two sorted streams; the merge component is
a specialisation of sort which provides this functionality.
Finally, the two sorted streams of words to be spelled and
acceptable words are checked by common — derived from
the Unix comm command — which outputs a list of words
contained in the first stream and not contained in the sec-
ond one. This stream of misspelled words is sent using the
ListBoxSink glue component to a GUI list box. It is impor-
tant to note that the integration of GUI elements using the
same component object paradigm and the merging of two
data streams could not be implemented using the standard
Unix linear pipeline system.

Participants

The components composed are object instances of either
active process components that are connected to existing
data sources and sinks, or connector and glue components
(pipes and environment interfacing classes) that provide
such sources and sinks.

5



Consequences

Using the component composition pattern it is possible to
implement sophisticated component interaction topologies.
In addition, it is possible to package together existing com-
ponents to provide new standard and reusable components.

Implementations

The implementation of the composition pattern is indepen-
dent of the component-framework used. Most relevant de-
cisions are taken when implementing the encapsulation and
the glue patterns. Designs based on the composition pattern
should be portable across different component frameworks.

4 Case Study

We used the component mining process pattern language to
prototype the encapsulation of a number of Unix tools using
the object-oriented features of the Perl programming lan-
guage [5]. Following this proof of concept demonstration
we decided to implement the components in a wider-used
platform. We thus implemented a number of key compo-
nents using Microsoft’s OLE/COM technology [3] and used
them from within Java and Visual Basic applications. In the
following sections we outline the key features of the tech-
nology platform we utilised, describe the concrete frame-
work we used for encapsulating components, explain how
we automated the repetitive parts of the mining process,
present an exemplar application we realised using the en-
capsulated components, and discuss interoperability issues.

4.1 Implementation Environment

The Microsoft Component Object Model (COM), our ba-
sis for packaging the components, is a software architec-
ture that allows applications and systems to be built from
binary components supplied by different software vendors.
COM is the underlying architecture that forms the founda-
tion for higher-level software services, like those provided
by OLE — Microsoft’s unified environment of object-based
services. OLE services span various aspects of component
software, including compound documents, custom controls,
inter-application scripting, data transfer, and other software
interactions. The basic features of COM include the defi-
nition of an efficient binary standard for component inter-
operability, programming language independence, dynamic
loading of components, limited multiple platform support,
and mechanisms for component communication across pro-
cess and network boundaries.

COM components are packages of compiled code that
conform to the model’s conventions. In COM, applications
interact with each other and with the system through collec-
tions of functions called interfaces. A COM interface is an

immutable, strongly-typed contract between software com-
ponents to provide a small but useful set of semantically
related operations (methods). As an example, all OLE ser-
vices (such as drag and drop) are simply COM interfaces.
Clients interact with interfaces through pointers. Access to
the component’s data (i.e. public object members) is only
available through interfaces. All components support a base
interface called IUnknown which, apart from two reference
counting methods, provides the QueryInterface mechanism
that allows clients to dynamically discover whether or not
an interface is supported by a component and get the re-
spective interface pointer.

For languages that do not support pointers COM defines
automation, an alternative way to access component meth-
ods through a standard late-binding interface called IDis-
patch. Automation-based component access is easier to pro-
gram on the client side (it does not require the setup of a
C-compatible stack frame) and is therefore widely used by
text-based scripting languages such as Visual Basic for Ap-
plications, Perl, and TCL/TK. In addition, some languages
(e.g. Perl, VBA) and language extensions (e.g. Visual C++
5.0, Visual Java) provide syntactic sugar for accessing COM

component “properties” exposed through a pair of specially
tagged propget/propput interfaces, as public member vari-
ables. COM interfaces are described using the Microsoft
Interface Definition Language (MIDL), a language loosely
based on the OSF DCE IDL.

Implementing COM components from scratch in C++ is
not trivial. Every component, in addition to its custom func-
tionality, must support registration, an interface for creating
component instances called IClassFactory, object creation,
reference counting, the QueryInterface method, and, possi-
bly, dual interfaces for supporting its use through C++ and
automation-based scripting languages. Fortunately, these
tasks are supported by the Microsoft Foundation Classes
(MFC), a large, monolithic application framework for pro-
gramming in Microsoft Windows, and by the Active Tem-
plate Library (ATL) a leaner set of template-based classes
that specifically target the development of COM compo-
nents. We decided to implement the mined components
using ATL. By aggressively utilising C++ templates and
multiple inheritance ATL supports the development of COM

components with brevity and minimal runtime overhead.
A bare-bones ATL-based COM component can be imple-
mented in less than 100 lines; most of them automatically
generated by a “wizard”-type tool. We therefore found ATL

to be ideal for implementing the large number of Unix-
mined components and use as a basis to automate the task.

4.2 Encapsulation Framework

The Unix Filter Component (UFC framework we developed
for encapsulating the Unix-mined components consists of
the following classes:

6



command "uniq"

options {
NumberOccurences:bool:-c:Prefix lines by the number of occurrences
PrintDuplicate:bool:-d:Only print duplicate lines
SkipFields:int:-f:Avoid comparing the N first fields
SkipChars:int:-s:Avoid comparing the N first characters
CheckChars:int:-w:Compare no more than N characters in lines
PrintUnique:bool:-u:Only print unique lines

}

Figure 5: Description of the uniq command.

UFCFile Implements a connector-type component that is
used for connecting Unix filter-type components to
disk-based files for input and output. A UFCFile com-
ponent can act as data source or a data sink.

UFCIO Implements a glue-type component that connects
filter-type components to Windows edit controls for
GUI-based interaction. A UFCIO component can act
as data source getting input from an edit box or as a
data sink sending output to an edit box window.

UFCPipe Implements a connector-type component pro-
viding a data-source/data-sink pair for connecting fil-
ters among each other.

UFCTee Implements a connector-type component for
splitting the output of a filter into two identical data
streams to be connected to other filters. UFCTee must
be connected to appropriate data-sources and sinks.

FilterBase A base class (not a component) used to provide
basic filter-handling functionality. It implements the
filter invocation method, member variables for setting
the filter’s standard input and output, input/output redi-
rection, and a method for determining if a filter is still
executing.

UFCFilter As a subclass of FilterBase, UFCFilter imple-
ments a generic filter-type component that can be used
to encapsulate filters for which specific components
have not been implemented. The filter executable file
and its parameters are all specified using a Comman-
dLine property. UFCFilter components must be con-
nected to appropriate data-sources and sinks.

Filter components are typically executed as separate pro-
cesses utilising existing collections of Unix tools ported to
Windows such as UWIN [11] and Cygwin [16]. The UFCIO
and UFCTee components support asynchronous operation
by running in separate threads within the context of the ap-
plication that uses them.

4.3 Process Automation

Based on the encapsulation framework, and the FilterBase
class in particular, we defined a process and implemented
support tools for automating the mining of Unix filters as

Figure 6: Accessing the UFCuniq component within Visual
Basic.

components. Specifically, for every filter that is to be con-
verted into a component, one has to define the syntax and
semantics of tool’s command-line options using a small
domain-specific language [21]. An example of this descrip-
tion for the uniq filter is depicted in Figure 5. For every
filter command line option (e.g. -c) one specifies a mean-
ingful name that is to be used as the respective component
property, the option’s type, the respective code expected by
the filter as a command-line argument, and a descriptive
text that appears for the given property in component ob-
ject browsers.

A small compiler, implemented in Perl [23], compiles the
declarative description of the filter interface into a C++ sub-
class of FilterBase that implements the respective compo-
nent (e.g. UFCuniq), the header containing the class dec-
laration, and the associated MIDL interface definition. The
class contains a member variable for every filter command-
line option, methods for getting and setting the member
variable value (thus exposing the command-line option as
a “property” of the component), a method for initialising
the properties to a known state, and a method for executing
the filter with a command line constructed dynamically to
match the values of the component’s properties. The com-
ponent also inherits and exposes as properties the methods
of FilterBase, namely properties for setting the filter’s stan-
dard input and output, and a property for determining if a fil-
ter is still executing. Using the automated component min-
ing process we were able to define new filter components
at an average rate of four components an hour. An exam-
ple of how the methods and properties of the automatically
created UFCuniq component appear in the Visual Basic en-
vironment can be seen in Figure 6. Connector and glue-type

7



Figure 7: A GUI-based spelling checker built using UFC.

components still need to be written by hand, but the effort
required to implement them is only a small part of the effort
that would be required to mine a large number of filter-style
programs without an automated process.

4.4 Exemplar Application

We used UFC and the mined components to implement
a simple GUI-based spelling checker following the design
outlined in section 3.3. The spelling checker was im-
plemented in less than 100 lines of Visual Basic code.
Its user-interface is depicted in Figure 7. The spelling
checker utilises the following UFC components: UFCIO,
UFCTee, UFCPipe, UFCtr, UFCsort, UFCuniq, UFC-
comm, and UFCwc. Compared to a spelling checker im-
plemented using a linear pipeline in the Unix environment,
our component-based implementation offers the following
enhancements:

it provides a graphical user-interface,

the errors detected can be interactively used to search
for suggestions,

it counts the number of errors detected utilising UFC’s
ability to implement sophisticated non-linear pipeline
topologies, and

it can check formatted text.

In addition, the application was implemented using a typed
and modular language in a rich integrated development en-
vironment offering a syntax-aware editor, a sophisticated
debug facility, a graphical interface builder, integrated help
facilities, and source-code management. Third-party tools

import ufcbase.*;
import java.io.*;

public class UFCSortClient {
public static void main(String args[]) {

IUFCFileDefault source = (IUFCFileDe-
fault) new ufcbase.UFCFile();

IUFCFileDefault sink = (IUFCFileDe-
fault) new ufcbase.UFCFile();

IUFCsortDefault sort = (IUFCsortDe-
fault) new ufcbase.UFCsort();

source.Open(args[0] , 0);
sink.Open(args[1] , 1);
sort.putDataSource(source.getHandle());
sort.putDataSink(sink.getHandle());
sort.Run();
while(sort.getExecuting() != 0) {

;
}
source.Close();
sink.Close();

}
}

Figure 8: Using UFC components in Java.

also provide support for profiling, automated source code
examination, and browsing facilities. This level of support
is sadly not existent in Unix-based shell-programming ap-
proaches.

4.5 Interoperability

The mined components can be used from any language sup-
porting COM such as Visual C++, Visual Java, Delphi, Vi-
sual Basic, Perl, and TCL/TK. As an example, we used the
UFC components from Visual Java by having the “Java type
library wizard” provided by the environment create a spe-
cial .class file representing the COM object. We were
then able to import the UFC methods and use them as speci-
fied. An small example that sorts a file outputting the result
in another file is listed in Figure 8.

Two important interoperability problems are associated
with our approach. First of all, the resulting program vio-
lates the write-once, run-everywhere concept of Java as it
uses the Unix filter components which are written in C and
compiled for a particular processor architecture. In addi-
tion, UFC relies on COM, a proprietary technology, that is
not universally available. We were able to offer a partial so-
lution to these problems by developing a bridge that maps
COM UFC objects into CORBA [17] objects. The bridge ex-
ports the UFC components as CORBA objects redirecting re-
quests to the implementation of the respective COM compo-
nents. Although the bridge is implemented in Visual J++,

8



once it is installed and running, any system, processor ar-
chitecture, and language supporting CORBA bindings can
use UFC functionality. The object request broker (ORB) we
used, ORBacus for C++ and Java by Object-Oriented Con-
cepts, currently supports C++ and Java. In addition, OMG

defines IDL language bindings for C, Smalltalk, Ada, and
COBOL.

5 Concluding Remarks

The component mining process proved to be addictive. The
ease of encapsulation, the limitless possibilities of object
structuring, and the flexibility of using a high-level lan-
guage to interact with the components opened new ways
to leverage existing tools and applications. However, the
process for mining and using the components is not yet
as smooth and versatile as we would like. In particular,
the non-standard semantics of Unix command-line option
processing means that a number of programs with an id-
iosyncratic interface can not be automatically converted
into components. In addition, the asynchronous execution
of components as separate processes in conjunction with the
new possibility to create arbitrary component interaction
graphs (and not just linear pipelines) means that component
users must carefully think about the issues of synchronisa-
tion and deadlocks. Finally, our component implementation
— which is based on components executing as separate pro-
cesses — may not be as efficient as components executing
within the context of the application that uses them.

We are currently working on extending our compo-
nent interface description domain-specific language to de-
scribe more sophisticated tool command-line options, ex-
perimenting with more efficient encapsulation techniques
using threads, and planning to use our approach for con-
structing image processing applications from encapsulated
tools such as the portable bitmap collection [18]. In the fu-
ture we would like to see component mining extended to
other mining fields, probably supported by different pattern
languages applicable to the specific domains.

Acknowledgements

We would like to thank the anonymous referees for their
insightful comments on the previous version of this paper.

References

[1] Alexander C, Ishikawa S, Silverstein M, Jacobson M,
Fiksdahl-King I, and Angel S. A Pattern Language.
(Oxford University Press, 1977).

[2] Booch G, Rumbaugh J, and Jacobson I. The Unified
Modeling Language User Guide. (Addison-Wesley,
1999).

[3] Brockschmidt K. Inside OLE. (Microsoft Press, sec-
ond edition, 1995), Redmond, Washington, USA.

[4] Brown A. W and Wallnau K. C. The Current State
of CBSE. IEEE Software, 15(5):37–46, (Septem-
ber/October 1998).

[5] Conway D. Object Oriented Perl. (Manning Publica-
tions Co., 2000), Greenwich Ct, USA.

[6] D’ Souza D and Wills A. Objects, Components, and
Frameworks With UML : The Catalysis Approach.
(Addison-Wesley, 1998).

[7] da Silva M. F and Werner C. M. L. Packaging
Reusable Components Using Patterns and Hyperme-
dia. In Proceedings of The Fourth International Con-
ference on Software Reuse (ICSR ’96). (IEEE, 1996).

[8] DeMillo R, Lipton R, and Perlis A. Social Processes
and Proofs of Theorems and Programs. In Proc.
Fourth ACM Symposium on Principles of Program-
ming Languages, pages 206–214, (Los Angeles, Cali-
fornia, Jan. 1977. ACM).

[9] Gamma E, Helm R, Johnson R, and Vlissides J. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. (Addison-Wesley, 1995).

[10] International Organization for Standardization,
Geneva, Switzerland. Information technology —
Portable operating system interface (POSIX) —
Part 2: Shell and Utilities, 1993. ISO/IEC 9945-
2:1993 (IEEE/ANSI Std 1003.2-1992 & IEEE/ANSI
1003.2a-1992).

[11] Korn D. G. Porting Unix to Windows NT. In Pro-
ceedings of the USENIX 1997 Annual Technical Con-
ference, (Anaheim, CA, USA, Jan. 1997. Usenix As-
sociation).

[12] Krueger C. W. Software Reuse. ACM Comput. Surv.,
24(2):131–183, (June 1992).

[13] Meunier R. The Pipes and Filters Architecture. In
Coplien J. O and Schmidt D. C, editors, Pattern Lan-
guages of Program Design, chapter 22, pages 427–
440. (Addison-Wesley, 1995).

[14] Mili H, Mili F, and Mili A. Reusing Software: Issues
and Research Directions. IEEE Trans. Softw. Eng.,
21(6):528–562, (June 1995).

[15] Nierstrasz O, Gibbs S, and Tsichritzis D. Component-
Oriented Software Development. Commun. ACM,
35(9):160–165, (Sept. 1992).

9



[16] Noer G. J. Cygwin32: A Free Win32 Porting
Layer for UNIX Applications. In Proceedings of the
2nd USENIX Windows NT Symposium, (Seattle, WA,
USA, Aug. 1998. Usenix Association).

[17] Object Management Group . The Common Ob-
ject Request Broker: Architecture and Spec-
ification, (Oct. 1999), Also available online
http://www.omg.org/library. January 2000.

[18] Poskanzer J and others . NETPBM: Extended
Portable Bitmap Toolkit. Available online
ftp://ftp.x.org/contrib/utilities/, (Dec. 1993), Re-
lease 7.

[19] Shaw M and Garlan D. Software Architecture: Per-
spectives on an Emerging Discipline. (Prentice Hall,
1996).

[20] Spinellis D. Explore, Excogitate, Exploit: Compo-
nent Mining. IEEE Computer, 32(9):114–116, (Sept.
1999).

[21] Spinellis D and Guruprasad V. Lightweight Lan-
guages as Software Engineering Tools. In Ramming
J. C, editor, USENIX Conference on Domain-Specific
Languages, pages 67–76, (Santa Monica, CA, USA,
Oct. 1997. USENIX).

[22] Szyperski C. Component Software: Behind Object-
Oriented Programming. (Addison-Wesley, 1998).

[23] Wall L and Schwartz R. L. Programming Perl.
(O’Reilly and Associates, 1990), Sebastopol, CA,
USA.

[24] Wills A. Designing Component Kits and Architec-
tures. In Barroca L, Hall J, and Hall P, editors,
Software Architectures: Advances and Applications.
(Springer Verlag, 1999).

[25] Yu H. Using Object-Oriented Techniques to Develop
Reusable Components. In Proceedings of the confer-
ence on TRI-Ada ’97, pages 117–124. (ACM, 1997).

Biographical Information

Diomidis Spinellis is an assistant professor at the Depart-
ment of Information and Communication Systems, Univer-
sity of the Aegean, Greece. He holds an MEng in Software
Engineering and a PhD in Computer Science both from Im-
perial College (University of London, UK). He is the author
of more than 40 technical papers and conference presen-
tations. He has contributed software to the 4.4BSD Unix
distribution, the X-Windows system, and is the author of a
number of public domain software packages, libraries, and
tools. His research interests include Software Engineering,

Programming Languages, and Information Security. Con-
tact him at dspin@aegean.gr.

Konstantinos Raptis is a PhD student in the Department
of Information and Communication Systems at the Uni-
versity of the Aegean. His research interests include dis-
tributed applications, software component models and dis-
tributed component interoperation technologies. Contact
him at krap@aegean.gr.

10


