
Security Applications of Peer-to-Peer Networks� �

Vasileios Vlachos, Stephanos Androutsellis-Theotokis, Diomidis Spinellis
Department of Management Science and Technology

Athens University of Economics and Business
Patission 76, GR-104 34, Athens, Greece

Abstract

Open networks are often insecure and provide an opportunity for viruses and
DDOS activities to spread. To make such networks more resilient against these
kind of threats, we propose the use of a peer-to-peer architecture whereby each
peer is responsible for: (a) detecting whether a virus or worm is uncontrollably
propagating through the network resulting in an epidemic; (b) automatically dis-
patching warnings and information to other peers of a security-focused group; and
(c) taking specific precautions for protecting their host by automatically harden-
ing their security measures during the epidemic. This can lead to auto-adaptive
secure operating systems that automatically change the trust level of the services
they provide. We demonstrate our approach through a prototype application based
on the JXTA peer-to-peer infrastructure.

Keywords Peer-to-peer, Antivirus, Intrusion Detection, JXTA

1 Introduction

The rapid evolution of the Internet, coupled with the reduction in the cost of hardware,
have brought forth very significant changes in the way personal computers are used.
Nowadays, the penetration of the Internet is wide, at least in the developed world, and
high percentage of connectivity is handled through broadband technologies such as
DSL, cable modems, satellite links and even 3G mobile networks. Many companies
have permanent connections to the Internet through leased lines and optical fibers, and
many home users through the aforementioned broadband connections. If one also takes
into account the significant development of wireless networking technologies (such as
Wireless LAN, HyperLAN), the immediate result is an almost universal connection of

�Computer Networks, 45:195–205, 2004.
�This is a machine-readable rendering of a working paper draft that led to a publication. The publication

should always be cited in preference to this draft using the reference in the previous footnote. This material
is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein
are retained by authors or by other copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author’s copyright. In most cases, these works may not
be reposted without the explicit permission of the copyright holder.

1



most users on a 24-hour basis. Although the potential benefits arising from these devel-
opments are various and important, so are the dangers that follow from the possibility
of malicious abuse of this technology.

The proliferation of viruses and worms, as well as the installation of Trojan horses
on a large number of computers aiming at Denial of Service (DoS) attacks against large
servers, constitute one of the major current security problems. This is due to the extent
to which critical infrastructures and operations such as hospitals, airports, power plants,
aqueducts etc. are based on networked software-intensive systems. The measures taken
for protection against such threats include [45] the use of firewalls, anti-virus software
and intrusion detection systems(IDS). Considerable importance is also placed on the
topology of the network being protected [43], as well as to its fault tolerance to ensure
that its operation will continue even if a part of it is damaged.

A significant increase in the spread of viruses, worms and Trojan horses over the
Internet has been observed in the recent years. Recent evidence shows that older boot
sector viruses, as well as viruses transmitted over floppy disks no longer constitute
a considerable threat [12]. At the same time, though, modern viruses have become
more dangerous, employing complex mutation, stealth and polymorphism techniques
[37] to avoid detection by anti-virus software and intrusion detection systems. These
techniques are particularly advanced and, combined with the fact that antivirus software
is often not properly updated with the latest virus definitions, can lead to uncontrollable
situations.

In the last two years it has been proven both theoretically [38, 23] but mainly practi-
cally that the infection of hundreds of thousands of computers within a matter of hours
— or even minutes — is feasible. At the theoretical level Staniford [38] presented
scanning techniques (random scans, localized scans, hit-list scans, permutation scans)
which, used by a worm, can perform attacks of this order. Indeed such worms are
often referred to as Warhol wormsor Flash wormsdue to their potential velocity of
transmission.

A similar confirmation was obtained practically in the cases of the worms Code Red
[31], Code Red (CRv2)[5], Code Red II[13], Nimda[26, 27, 20], and Slammer[22],
which were characterized as epidemics by the scientific community [44] (although a
more appropriate epidemiological term would be pandemics). Recently the Blaster-
worm [24, 21] caused significant disruption in the Internet, although the infection rate
of the specific worm was relatively slow in comparison with the previously mentioned
worms. The reason for the effectiveness of the Blaster-worm was the exploitation of the
Windows DCOM RPC interface buffer overrun vulnerability. This vulnerability affects
all unpatched Windows NT /2000/ XP systems, as opposed to Code Red worms varia-
tions or the Slammer worm which were focused on machines acting as Web Servers or
SQL Servers respectively.

All of the above is evidence that rapid malcodeis extremely hard to confront us-
ing the “traditional” way of isolating and studying the code to extract the appropriate
signature and update the IDS in real time.

We now propose to the reader to consider human behavior during a flu epidemic.
Obviously a visit to a doctor and the use of vaccines is essential, however there is also
need for an increased awareness and use of hygiene rules: avoiding crowded spaces,
increasing the ventilation of our working area etc. Once the epidemic subsides, these

2



measures can be suspended; a person showing symptoms of the disease, of course,
should still visit a doctor to receive medical care, regardless of whether the epidemic is
still taking place.

The classic computer protection methods can be likened to the above medical situa-
tion: The vaccination of the population can be compared to updating the virus signature
files; the lookout for symptoms may be compared to detection by an IDS; while the hy-
giene rules followed, which are essential for the protection of the larger, still unaffected
population, may be compared to the operation of our proposed system, described in the
following sections.

2 Architecture

Peer-to-peer networks, which we will hereafter reference as p2p networks, are often
considered to be security threats for organizations, companies or plain users, mainly
due to the use of p2p-based applications for illegal file sharing, and to the ability
of worms to be spread through such applications (e.g. VBS.GWV.A [41, 40] and
W32.Gnuman [10]). Our work indicates, however, that p2p networks can also be posi-
tively utilized to significantly reinforce network security, by offering substantial help in
the protection against malicious applications. We propose an effective way to achieve
this by collecting and exchanging information that will allow us to obtain a global
overview of the network status, with reference to ongoing security attacks. The goal of
our methodology is to select the most appropriate security policy, based on the level of
danger posed by rapid malcode circulating in the network.

P2p networks leverage the principle that a much better utilization of resources (pro-
cessing power, bandwidth, storage etc.) is achieved if the client/server model is re-
placed by a network of equivalent peers. Every node in such a p2p network is able to
both request and offer services to other peer nodes, thus acting as a server and a client
at the same time (hence the term “servent” = SERVer + cliENT which is sometimes
used).

The motivation behind basing applications on p2p architectures or infrastructures
derives to a large extent from their adaptability to variable operating environments,
i.e. their ability to function, scale and self-organize in the presence of a highly tran-
sient population of nodes (or computers/users), hardware failures and network outages,
without the need for a central administrative server.

Our proposed application, which we call “NetBiotic”, requires the cooperation of
several computers within a common peer group, in which messages are exchanged de-
scribing the attacks received by each computer. It consists of two independent entities:
a Notifier and a Handler. These entities act as independent daemons for UNIX sys-
tems, services for Windows NT/2000/XP or processes for Windows 9x/Me. From now
on we will be referring to these entities as daemons for simplicity. Figure 1 illustrates
the architecture of the proposed system within a group of cooperating peer computers.

The Notifier is a daemon responsible for monitoring the computer on which it runs
and collecting any information relevant to probable security attacks. There is a plethora
of different approaches to incorporate in the Notifier; for simplicity in our preliminary
implementation we only monitor the log files of several security related applications,

3



Figure 1: The architecture of the NetBiotic system within a group of cooperating peer
computers.

such as firewalls, anti-virus software and IDS systems. These are applications that
collect information about security threats and attacks to the computer system on which
they are running and either notify the user of these attacks or take specific measures,
while at the same time storing information relevant to the attacks into log files. By
regularly reading the log files generated by these applications, the Notifier detects any
recently identified security attacks to the computer it is running on. At regular time
intervals �, the Notifier of node � will record the number of hits (��

� ) the node received
over the past interval. It will then calculate and transmit the percentage ��

� by which
this average differs from the average hits in an aggregate of the � latest intervals, given
by

��� �
��� �

�
���

�����
��
�

��
���

�����
��
�

�

4



where:

� � is the ordinal number of a fixed time interval.

� � is a node identifier.

� ��� is the number of attacks node � received in the interval �.

� ��� is the percentage increase or decrease in attacks during the current interval �
on node �.

� ��� �� is the size of the “window” used, in number of � time intervals, within
which the average attack rate is calculated.

Selecting the appropriate length of the time interval � is currently a subject of further
research. In our current implementation we use a value of 15 minutes, which we feel
provides a balance between increased network traffic and delay in notifying the network
of attacks. This will be further discussed in the next Section.

A value of ��� significantly greater than ��� is an indication that node � is under se-
curity attack during the interval �. The actual threshold used for ��

� is set by experience,
and can vary according to the tolerance for false positives/negatives one has. With a
small threshold it is possible to falsely interpret slightly increased rapid malcode activ-
ity as an epidemic (false positive), leading to an unnecessary activation of the available
countermeasures, which in turn can disrupt some non critical useful services and cause
inconvenience to the users. A very large threshold on the other hand, would probably
fail to identify a rapid malcode epidemic (false negative) leaving the system protected
only by its standard built-in security mechanisms. We tend to believe that is much
better to tune the NetBiotic system towards a large threshold because rapid malcode
epidemics cause a number of side-effects which are difficult to remain unnoticed. For
us it is more important to ensure the timely recognition of these symptoms, in order
to increase the security level of the protected system before a circulating worm may
manage to launch an attack against it.

The Handler is also a daemon, responsible for receiving the messages sent from
the Notifiers of other computers, and for taking the appropriate measures when it is
deemed necessary. More specifically, it records the hit rates � � and percentage changes
�� received from the different nodes in the peer group within a predefined period of
time �, and calculates the overall change in attack rate, averaged for all � nodes of the
peer group that transmitted a message during the last interval:

���� �

���

��� �
�
�

�

�

The architecture supports countermeasures based upon predefined thresholds for
����, which are again set by experience. If ���� exceeds an upper threshold, the se-
curity level of the computer is raised. If, on the other hand, it drops below a lower
threshold for a large period of time, the security level at which the computer functions
is reduced.

Selecting the appropriate thresholds ����� and �	
� for increasing or decreasing the
security levels is crucial. In our approach, the thresholds are selected empirically and
we have:

5



� If ���� � �����, then increase security policy.

� If ���� 	 �	
�, then decrease security policy.

� If �	
� � ���� � ��
��, do nothing.

We base our decision for modifying the security policy on the rate of change of
attacks, rather than on the actual number of attacks, to normalize the inputs from all
peers with respect to their regular susceptibility to attacks; a peer whose actual number
of attacks during a monitored time interval has increased from 1000 to 1100 has only
experienced a 10% change in the attack rate, while a peer whose number of attacks
increased from 50 to 150 within the same interval has experienced a 200% change in
the attack rate; still, they have both received 100 attacks more than usual.

As far as the actual utilization of our architecture for protecting the computer sys-
tem is concerned, the countermeasures taken will depend on many factors. A simple
personal computer will be requiring different protection strategy than the central server
of a large company. The type of operating system is also an important factor. The
proposed system is not suggested as a replacement for traditional protection software
(anti-viruses, IDS, firewalls etc.). The aim of NetBiotic is to assemble an additional,
overall picture of the network status and suggest the basic security measures to be taken
in the event of an epidemic. The NetBiotic architecture might not be capable to protect
against a specific attack, however it will engage the standard measures that in many
cases are crucial (such as disabling HTML previewing in several mail clients, not al-
lowing Active X controls in various web browsers, disabling macros in some office
application etc.).

In our prototype design, the recommended measures for a simple personal com-
puter running Microsoft Windows would be to increase the security level of the default
mail client and web browser. It would be additionally helpful to alert the user of the
increased threat, in order to minimize threats of automated social engineering attacks.
Servers can similarly disable non-critical networked services (e.g. by modifying the
inetd.conf file in the case of Linux/Unix based operating systems). Figure 2 illustrates
the operation and interaction of the Notifier and Handler daemons.

3 Implementation

The prototype system we present here was developed using the JXTA protocol [15].
JXTA is a partially centralized p2p protocol implementation introduced in early 2001,
designed for maximum peer autonomy and independence. It allows applications to be
developed in any language, it is independent of operating system type and is not limited
to the TCP/IP protocol for data transfer. This allows an application such as NetBiotic
to be easily ported to various operating systems, which is crucial to its operation, as its
effectiveness will depend on the size of the peer group that will adopt it. An additional
benefit of JXTA is its availability under an open source software license agreement,
similar to the Apache License [1].

Due to the nature of our application, security issues are of particular interest. Secu-
rity provisions are usually incorporated in p2p architectures by means of various cryp-
tographic mechanisms such as the information dispersal algorithm [30] or Shamir’s

6



Figure 2: Operation of the Notifier and Handler daemons

secret sharing code [33], anonymous cryptographic relays [32], distributed stegano-
graphic file systems [11], erasure coding [19], SmartCards or various secure routing
primitives [7].

JXTA peers function under a role-based trust model, whereby individual peers func-
tion under the authority of third-party peers to carry out specific tasks. Public key en-
cryption of the messages exchanged, which may be in XML format, as well as the use
of signed certificates are supported, providing confidentiality to the system. The use
of message digestsprovides data integrity, while the use of credentials— special to-
kens that authenticate a peer’s permission to send a message to a specific endpoint —
provide authentication and authorization. JXTA also supports the use of secure pipes
based on the TLS protocol. Further work is being carried out based on the security
issues of the JXTA system, notably the implementation of a p2p based web of trust in
the Poblano Project [4], which will be discussed in the future work Section.

Our system was implemented in Java (java2 version 1.4.0 02) using JXTA version
1.0, and uses the winreg [36] tool to administer the windows registry and modify the

7



security settings of the various applications. The main advantages of Java are its com-
patibility with most operating systems as well as the fact that it is one of the most
secure programming languages.

In our preliminary implementation, the Handler modifies the security settings of
the Microsoft Outlook mail client and the Microsoft Internet Explorer web browser.
These two applications were selected as they are often the target of viruses. The simple
operation of increasing their security settings is therefore enough to provide effective
protection to a large number of users.

Most anti-virus programs can be adjusted to produce log files with the attacks they
intercept. By regularly monitoring such log files, the Notifier daemon is able to detect a
security attack and notify the peers. To test our prototype system, we created a software
tool which randomly appends supposed security attack entries to these log files.

The NetBiotic architecture is compatible with any IDS or anti-virus software that
can be setup to record the security attacks against the system it is protecting in a log file.
Our aim is to make the NetBiotic system as independent as possible from the IDS with
which it cooperates and the underlying operating system. This independence, however,
cannot be total, as the following factors will be unavoidably system dependent:

� Log files
In its simplest form, the system can simply check the size of the log file. For
a more sophisticated operation, though, it would be necessary to incorporate a
parser that would extract specific information from the log files. Such a parser
has to be specific to each different type of log file used.

� Countermeasures taken
System independence cannot be achieved in the case of the countermeasures
taken, which will depend on the operating system. Different scripts have to be
used to modify the security levels of applications in different operating systems.

Our system has been tested in laboratory environment as well as in a peer group
that was set up for this purpose, in which virus attacks were simulated on some peers,
resulting in the modification of the security settings of Microsoft Outlook and Internet
Explorer on other peer computers. No real viruses were deployed. A program was run-
ning on each of the peer computers and periodically edited the log file of the antivirus
software, simply changing its size to simulate a security attack event. The average
frequency with which these events were simulated was random and different for each
computer. The exchange of messages, individual and overall average hit rates as well
as the resulting changes in the security settings of the application were recorded and
verified against our theoretical expectations.

Finally, since our system consists of two independent daemons, it is possible to only
install one of the two on certain peer computers. For instance, the Notifier daemon
would be particularly useful running on a large company server, and supplying the
peers with information about the security threats it faces. The administrators of such a
server may prefer not to install the Handler daemon, and instead manually take action
in the event of security attacks.

Similarly, for a personal computer user who may not have adequate security mea-
sures and antivirus software installed (for either financial or other reasons), installing

8



the Handler daemon itself may provide an adequate level of protection. In this case, the
Handler daemon would modify the local security level based on information received
by the security focused peer group. The Handler would therefore operate relying on
the trustworthiness of the information received from the peer group only, which may
in some cases be a disadvantage.

4 Related Work

The research that is most relevant to our proposed system has been carried out within
the framework of project Indra [14], with which we partially share a common philoso-
phy. We agree on the basic principle of using p2p technology to share security attack
information between computers in a network in order to activate security countermea-
sures if necessary.

We differ however in the circumstances under which specific countermeasures should
be taken. According to the Indra project team, in the event that a security attack is de-
tected countermeasures should be immediately initiated, by using the appropriate plug-
ins to protect the computer system. A single security attack anywhere in the network is
enough for them to generate a response. In short, Indra is designed to respond to every
single security attack.

In contrast, our system’s goal is to determine if there is a general increase in the
virus or worm attacks in the network, or more importantly a virus or worm epidemic
outbreak. Measures taken in this case, such as the increase in security settings of
mail clients, web browsers and anti-virus programs will only be effective during the
epidemic, and the system will return to its original state after it is finished. In our
design, individual virus or worm attacks in the network are not considered separately.
Furthermore, we believe that our design can be expanded to very large network sizes
without considerably increasing the overall network traffic.

A number of highly distributed systems rely on peer communications. The Hum-
mingbird system [28] is based on a cooperative intrusion detection framework that
relies on the exchange of security related information between networks or systems
in the absence of central administration. The structure of the Hummingbird system
is significantly more complex and advanced than NetBiotic, using a combination of
Manager-Hosts, Managed Hosts, Slave Hosts as well as Peer, Friend and Symbiote re-
lationships for the exchange of security related information. The Hummingbird system
includes advanced visualization tools for its configuration and monitoring of log files,
and although it may require considerable effort and expert knowledge for fine tuning
the cooperation of each host with the others, it is particularly effective for distributed
security attacks (such as doorknob, chaining, loopback attacks etc.). A potential sec-
ondary use of the Hummingbird system, in our view, could also be in the detection of
malcode.

Emerald [29, 25] is a system targeted towards the exchange of security incident re-
lated information between different domains or large networks. It consists of a layered
architecture that provides a certain abstraction, and requires the adjustment of param-
eters relevant to the trust relationships between cooperating parties. We believe that
Emerald, like Hummingbird, can be invaluable in protecting a computer system or net-

9



work against distributed and targeted attacks. NetBiotic may not be in the position to
affront such attacks with the same effectiveness, as its goal is the seamless and auto-
mated creation of a network of peers for the fast exchange of information regarding
rapid spread malcode activity, leveraging the benefits of peer-to-peer architectures and
topologies, and providing basic protection to the participating peers.

Bakos and Bert [2] presented a system for the detection of virus outbreaks. The
fastest spreading worms use scanning techniques for identifying potential target com-
puters. As a result, they also scan a large number of addresses that do not correspond to
actual computers. The routers that intercept such scanning messages usually reply with
a ICMP Destination Unreachable(also known as ICMP Type 3or ICMP-T3) message.
The authors propose that a carbon copy message be sent by the routers to a central col-
lector system, which will be responsible for collecting, correlating and analyzing this
data. Bakos and Bert have implemented such a system by modifying the kernel of the
Linux operating system to act as a router. The central collector receives the messages
and forwards them to an analyzer system, which extracts the valuable information. It
should however be examined whether the time required for the entire processing pro-
hibits the use of this system for fast spreading worms, as described by Staniford [38].

Systems that use an extended network to gather information yet rely on a central-
ized client/server model were also examined. DeepSight [6] is a system developed by
Symantec based on a client/server architecture, whereby centralized servers collect and
re-distribute security attack information. Since it is a commercial system it is not avail-
able for scientific research, however it does include a very widespread data collection
network.

An approach similar to DeepSight is taken by DShield, in which hundreds of com-
puters communicate with central servers and transmit their IDS log files. The servers
process the data and announce in a web site information about the currently active mal-
ware, the IP addresses from which most attacks originated and other useful information.
Through the incorporation of different parsers, DShield supports various different IDS

systems. DShield has been active for more than two years, with a significant number of
users. A disadvantage of the system is that the large volume of data collected requires
considerable processing time for extracting useful information. The theoretical times
taken by the Flash and Warhol worms as well as the measured times for the Slammer
worm [22, 38] to spread through the Internet are probably beyond the ability of DShield
to react.

Both DeepSight and DShield aim at providing a global view of the Internet security
status, however they are both subject to the disadvantages of the client/server architec-
ture they follow: their dependence on a single server for their operation and their lack
of adaptability makes them vulnerable to targeted attacks. An original approach taken
by the AAFID [35], whereby agents are used to collect virus attack information also
follows a centralized control structure. The same holds for the GrIDS system [39],
which uses activity graphs to control large scale networks and identify suspicious ac-
tivities, based on the judgment of a System Security Officer.

Finally, the following two approaches propose different ways of monitoring the
overall security state and threat level of a network: In the DIDS system [34], the over-
all security state of a network under observation is represented by a numerical value
ranging between 0 (safest) and 100 (least safe), while a clearly visual approach to rep-

10



resenting the network security state has been proposed [42, 8]. We find both approaches
very descriptive and useful to a System Security Officer. In our prototype NetBiotic
implementation, however, we are currently adopting a much simpler approach which
consists of choosing between three different security states (regular, low risk and high
risk), as described in Section 2.

5 Future Work

The NetBiotic system is an evolving research prototype. It is currently being extended
in a number of ways as discussed below, in order to subsequently be released as open
source software to allow the collaboration with other research groups working in simi-
lar directions.

At this stage, our goal is to propose an architecture, accompanied by a basic imple-
mentation for proof-of-concept purposes, which, based on a p2p network infrastructure
can provide security services for computer systems. Although our prototype performed
well in the situation in which we tested it, it is not suitable for performing large-scale
testing.

We expect that, before more advanced versions of our application will be imple-
mented, the scientific community will examine the use p2p networks in security ap-
plications from a theoretical standpoint and provide insight into the advantages and
disadvantages of such an approach.

The following conceptual and implementation improvements are currently being
considered:

� Vulnerability to malicious attacks
A major drawback of our current design is its inability to effectively verify the
information transmitted in the network. If one or more malicious users manage
to introduce in the peer network a large number of false hit rate indications, the
result may be the unwanted decrease of the security measures of the computers
in the network, rending them vulnerable to virus attacks.

We propose that all members of the security peer group will have to be authen-
ticated and verified, probably through the use of certificates, to enforce a consis-
tent authentication and authorization policy.

At the implementation level, to confront the problem of malicious users intro-
ducing false information we further propose the following approaches, based on
the capabilities offered by JXTA:

1. JXTA supports the exchange of encrypted messages based on the TLS algo-
rithm secured pipes [3], which will be used for the transmission of warning
messages.

2. JXTA message digestwill be used for data integrity purposes.

3. Other research groups are involved in the creation of a p2p-based web of
trust. We intend to study these systems to examine to what extent they can
be used to enhance the NetBiotic architecture.

11



� Use of epidemiological models
We believe that the incorporation of mathematical epidemiological models for
the detection of epidemic outbreaks in the network and determining the thresh-
old for initiating security level modifications should significantly enhance the
robustness of our system. A key point in our future research will be the selection
of the thresholds for modifying security policies. These thresholds will be vari-
able and will depend on each system’s characteristics and on an analysis of the
attack data collected.

Studies [9, 18, 16, 17] show that there is a correlation between the patterns of
spread of biological viruses and computer viruses. These studies were mainly
limited to closed local area networks. P2p models are ideal for gathering large
scale network virus information, which can subsequently be processed and adapted
to epidemiological models, leading to decision tools for concluding, or perhaps
even predicting, whether there is — or is likely to be — an epidemic outbreak in
the network.

� Choice of appropriate security policy
In conjunction with other factors, such as the role of the system being protected,
our system should be able to effectively choose the most appropriate security
policy for the specific period of time. In this way, single incidents of virus attacks
may not be the cause of any concern, yet the detection of epidemic outbreaks
would initiate a modification of the security policies.

� Platform porting
In porting our system to Unix/Linux platforms, the operating system could be
instructed to launch or halt applications, or automatically request updates. The
configuration of these operating systems can be edited through plain text files,
which is an additional benefit for our system.

6 Conclusions

Even the best protected organizations, companies or personal users are finding it dif-
ficult to effectively shield themselves against all malicious security attacks due the
increasing rate with which they appear and spread.

Antivirus applications, as well as IDS systems, identify the unknown malware by
employing behavioral based heuristic algorithms. These algorithms are particularly ef-
fective under a strict security policy, however they tend to produce an increased number
of false alarms, often disrupting and upsetting the smooth operation of a computer sys-
tem and the organization or users it supports. On the other hand, if the security policy
is relaxed, the threat of a virus infection becomes imminent.

We propose a platform based on p2p technology in which the computers partici-
pating as peers of a network automatically notify each other of security threats they
receive. Based on the rate of the warning messages received, our system will increase
or decrease the security measures taken by the vulnerable applications running on the
computer.

12



Our approach automates elements of the process of choosing the appropriate secu-
rity policy, based on data useful for adjusting the security levels of both the operating
system (by launching and terminating related applications) and the security applica-
tions (by modifying the security parameters of the heuristic algorithms they employ).
An important aspect of our design is that the traffic introduced in the network by the
peer nodes as a result of the transmission of hit rate information is minimal.

We believe that, with the inclusion of the future extensions we are currently work-
ing on, our approach may lead to operating systems, antivirus programs, IDS software
and applications that will be able to self-adjust their security policies.

References

[1] Apache license: Current on-line (June 2003):
http://httpd.apache.org/docs/license.

[2] G. Bakos and V. Berk. Early detection of internet worm activity by metering icmp
destination unreachable messages. In Proceedings of the the SPIE Aerosense,
2002.

[3] Wilson B.J. JXTA. New Riders, Indianapolis, IN, USA, June 2002.

[4] R. Chen and W. Yeager. Poblano: A distributed trust model for peer-to-peer
networks. Technical report, Sun Microsystems.

[5] Code Red CRv2. Current on-line (June 2003):
http://www.caida.org/analysis/security/code-red/coderedv2 analysis.xml.

[6] Deepsight threat management system:
Current on-line (June 2003): http://www.securityfocus.org.

[7] P. Druschel and A. Rowstron. Past: A large-scale, persistent peer-to-peer stor-
age utility. In Proceedings of the Eighth Workshop on Hot Topics in Operating
Systems, May 2001.

[8] R. Erbacher, K. Walker, and D. Frincke. Intrusion and misuse detection in large-
scale systems. IEEE Computer Graphics and Applications, 22(1), 2002.

[9] S. Forrest, S. Hofmeyr, and A. Somayaji. Computer immunology. Communica-
tions of the ACM, 40(10):88–96, 1997.

[10] W32.gnuman.worm: Current on-line (June 2003):
http://service1.symantec.com/sarc/sarc.nsf/html/w32.gnuman.worm.html.

[11] S. Hand and T. Roscoe. Mnemosyne: Peer-to-peer steganographic storage. In
Proceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS
’02), MIT Faculty Club, Cambridge, MA, USA, March 2002.

[12] Icsa labs 2002 computer virus prevalence survey. Current on-line (June 2003):
http://www.trusecure.com/download/dispatch/vps2002.pdf.

13



[13] Code Red II. Current on-line (June 2003):
http://www.eeye.com/html/research/advisories/al20010804.html.

[14] R. Janakiraman, M. Waldvogel, and Q. Zhang. Indra: A peer-to-peer approach to
network intrusion detection and prevention. In Proceedgings of 2003 IEEE WET
ICE Workshop on Enterprize Security, Linz, Austria, June 2003.

[15] Project jxta v2.0 java programmer’s guide: Current on-line (June 2003):
http://www.jxta.org/docs/jxtaprogguide v2.pdf.

[16] J Kephart. How topology affects population dynamics. In Proceedings of Artifi-
cial Life 3, Santa Fe, New Mexico, June 1992.

[17] J. Kephart, D. Chess, and S. White. Computers and epidemiology. IEEE Spec-
trum, May 1993.

[18] J. Kephart and S. White. Directed-graph epidemiological models of computer
viruses. In Proceedgings of IEEE Computer Society Symposium on Research in
Security and Privacy, pages 343–361, Oakland, CA, 1991.

[19] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, S.R. Gummadi, H. Weath-
erspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for
global-scale persistent storage. In Proceedings of ACM ASPLOS. ACM, Novem-
ber 2000.

[20] A. Mackie, J. Roculan, R. Russell, and VanVelzen M. Nimda worm analysis -
incident analysis report version ii. September 2001.

[21] J. Miller, J. Gough, B. Konstanecki, J. Talbot, and J. Roculan. Deepsight threat
management system threat alert - microsoft DCOM RPC worm alert.
Current on-line (August 2003):
https://tms.symantec.com/members/analystreports/030811-alert-dcomworm.pdf.

[22] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. The
spread of the sapphire/slammer worm. Current on-line (June 2003):
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html. Technical
report, 2003.

[23] D. Moore, G. Voelker, and S. Savage. Internet quarantine:requirements for con-
taining self-propagating code. In Proceedings of the 2003 IEEE Infocom Confer-
ence, San Francisco California, USA, April 2003.

[24] Microsoft security bulletin ms03-026. Current on-line (August 2003):
http://www.microsoft.com/technet/treeview/default.asp?
url=/technet/security/bulletin/ms03-026.asp.

[25] P. Neumann and P. Porras. Experience with EMERALD to date. In First USENIX
Workshop on Intrusion Detection and Network Monitoring, pages 73–80, Santa
Clara, California, April 1999.

14



[26] Current on-line (June 2003):
http://www.incidents.org/react/nimda.pdf.

[27] Current on-line (June 2003):
http://www.f-secure.com/v-descs/nimda.shtml.

[28] Polla, D., J. McConnell, T. Johnson, J. Marconi, D. Tobin, and D. Frincke. A
framework for cooperative intrusion detection. In Proceedings of the 21st Na-
tional Information Systems Security Conference, pages 361–373, October 1998.

[29] P. Porras and P. Neumann. EMERALD: Event monitoring enabling responses to
anomalous live disturbances. In Proceedings of the National Information Systems
Security Conference, October 1997.

[30] M.O. Rabin. Efficient dispersal of information for security, load balancing and
fault tolerance. Journal of the ACM, 36(2):335–348, April 1989.

[31] Code Red. Current on-line (June 2003):
http://www.eeye.com/html/research/advisories/al20010717.html.

[32] A. Serjantov. Anonymizing censorship resistant systems. In Proceedings of the
1st International Workshop on Peer-to-Peer Systems (IPTPS ’02), MIT Faculty
Club, Cambridge, MA, USA, March 2002.

[33] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613,
November 1979.

[34] S. Snapp, J. Brentano, G. Dias, T. Goan, T. Heberlein, C. Ho, K. Levitt,
B. Mukherjee, S. Smaha, T. Grance, D. Teal, and D. Mansur. DIDS (distributed
intrusion detection system) - motivation, architecture, and an early prototype. In
Proceedings of the 14th National Computer Security Conference, pages 167–176,
Washington, DC, 1991.

[35] E. Spafford and D. Zamboni. Intrusion detection using autonomous agents. Com-
puter Networks, (34):547–570, October 2000.

[36] D. Spinellis. Outwit: Unix tool-based programming meets the windows world.
In Proceedings of the USENIX 2000 Technical Conference, pages 149–158, San
Diego, CA, USA, June 2000.

[37] D. Spinellis. Reliable identification of bounded-length viruses is np-complete.
IEEE Transactions on Information Theory, 49(1):280–284, January 2003.

[38] S. Staniford, V. Paxson, and N. Weaver. How to own the internet in your spare
time. In Proceedings of the 11th USENIX Security Symposium, 2002.

[39] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, C. Wee, R. Yip, and D. Zerkle. GrIDS – A graph-based intrusion detec-
tion system for large networks. In Proceedings of the 19th National Information
Systems Security Conference, 1996.

15



[40] VBS.Gnutella. Current on-line (June 2003):
http://service1.symantec.com/sarc/sarc.nsf/html/vbs.gnutella.html.

[41] VBS.Gnutella. Current on-line (June 2003):
http://vil.nai.com/vil/content/v 98666.html.

[42] G. Vert, J. McConnell, and D. Frincke. A visual mathematical model for intru-
sion detection. In Proceedings of the 21st National Information Systems Security
Conference, pages 329–337, October 1998.

[43] C. Wang, J.C. Knight, and M.C. Elder. On computer viral infection and the effect
of immunization. In Annual Computer Security Applications Conference (AC-
SAC), pages 246–256, December 2000.

[44] V. Yegneswaren, P. Barford, and J. Ullrich. Internet intrusions: Global character-
istics and prevalence. In Proceedings of ACM SIGMETRICS, June 2003.

[45] R.L. Ziegler. Linux Firewalls. New Riders Publishing, Indianapolis IN, USA.,
2002.

16


