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A single statistical framework, comprising power law distributions and scale-free networks, seems to fit a
wide variety of phenomena. There is evidence that power laws appear in software at the class and function

level. We show that distributions with long, fat tails in software are much more pervasive than already

established, appearing at various levels of abstraction, in diverse systems and languages. The implications
of this phenomenon cover various aspects of software engineering research and practice.
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1. INTRODUCTION
Phenomena in a champaign covering diverse areas, from Internet topology to human
acquaintance networks, seem to be described by the same statistical framework. It
appears that so-called power law distributions are found anywhere that researchers
care to look for. The observation has escaped the confines of academia and has been
popularized, among others, by a leading scientist in the field [Barabási 2002; Barabási
and Bonabeau 2003].

In this context, some aspects of software have been studied and found to obey the
same laws. When software is seen as a network of interconnected and cooperating
components, the network is of a specific kind, a scale-free network, with important
characteristics. The idea that software forms a network is not new: twenty years ago
Knuth asserted that “a complex piece of software is, indeed, best regarded as a web
that has been delicately pieced together from simple materials” [Knuth 1984b]; what
is important is the realization of similarities of such a web with corresponding webs in
other fields.

Authors’ address: Patission 76, GR-104 34 Athens, Greece.
E-mail: louridas@aueb.gr, dds@aueb.gr, vbill@aueb.gr.
This work was partially funded by the European Community’s Sixth Framework Programme under the
contract IST-2005-033331 “Software Quality Observatory for Open Source Software (SQO-OSS).”
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2008 ACM 1049-331X/2008/09-ART2 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 2, Pub. date: September 2008.



2:2 P. Louridas et al.

In this work we examine power laws in software from a software engineering point
of view; if software forms structures with predictable characteristics, we may be able to
explain earlier empirical findings in software engineering research, exploit the struc-
tures in current practice, and also provide directions for further research.

The remainder of this paper is structured as follows. We introduce power laws in
Section 2. There is already evidence of power laws in software at a microscopic level,
for example at the level of method calls or class references [Wheeldon and Counsell
2003; Baxter et al. 2006]. Our main contribution, in Section 3, is to show that the phe-
nomenon is far more pervasive than already established. We find that software follows
power laws not only at fine-grained constructs, but at various levels of abstraction,
from the microscopic to the macroscopic. Moreover, we find that power laws emerge
both in products developed and released by software organizations, and as a result of
ad hoc contributions from around the world; and, predictably, the pattern remains the
same when we examine both source code and compiled code.

We present some implications of our findings for software engineering in Section 4.
The implications are two-fold: existing observations parallel our findings, while our
findings may guide software development research and practice. Details on the re-
search methodology and the tools used can be found in the Appendix.

2. POWER LAWS
The notion of power laws as a descriptive device has been around for more than a
century [Mitzenmacher 2004]. During this period power laws have cropped up in dif-
ferent guises in various contexts. The Italian economist Vilfredo Pareto described a
power law distribution (although nobody called them that way back then) in the 19th
century [Pareto 1897]. In the early 20th century, G. Udny Yule also came upon power
laws in his study of the creation of biological species [Yule 1925]. A bit later, Harvard
linguist George Kingsley Zipf “observed that the nth most common word in natural lan-
guage texts seems to occur with a frequency approximately proportional to 1/n” [Knuth
1998; Zipf 1935; 1949]. Yule’s work was visited by Herbert Simon [Simon 1955] (who
named the related distribution after Yule), while Benoit Mandelbrot came upon power
laws in a theory of word frequencies in 1951 [Mandelbrot 1951a; 1951b]; he went on to
show that they occur as a result of an optimization process [Mandelbrot 1953].

Mathematically, a power law is a probability distribution function in which the prob-
ability that a random variable takes a value is proportional to a negative power of that
value:

P (X = x) ∝ cx−k where c > 0, k > 0 (1)
Sometimes power laws are defined by an equivalent, complementary cumulative defi-
nition, where the probability that a random variable takes at least a value is propor-
tional to a negative power of that value, that is:

P (X ≥ x) ∝ cx−k
′

(2)

The two definitions, however, are essentially equivalent, with k = k′ + 1.
A well-known example of a power law is the distribution of city sizes. If we plot the

histogram of the distribution of city populations, we see that while the bulk of the dis-
tribution occurs for fairly small sizes (most US cities have small populations), there is
a small number of cities with a population much higher than the typical value [New-
man 2005]. Figure 1 is such a plot, in logarithmic scale, where a power law traces a
straight line. If we fit the data to a line, we find that the slope of the line is k = −1.12
(r2 = 0.82; we show other values of k for illustration purposes).

Power laws also appear in a slightly different form, as rank-size distributions, where
n items are ranked according to their sizes, the probability pr of the rth sized item
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Fig. 1: US city sizes, 2000 US Census

being inversely proportional to its rank. Such distributions are the Zipf law [Knuth
1998, p. 400] and the Zipf-Mandelbrot law [Mandelbrot 1983, p. 344]. In general, dis-
tributions like pr ∝ cr−k can be converted to power laws [Adamic 2000].

In everyday life we encounter power laws in the Pareto principle, or 80-20 rule (tak-
ing its name from the power law Pareto distribution). According to the rule, 20 percent
of something is responsible for 80 per cent of something else. Observations such as 20
percent of the effort needs to be expended for accomplishing 80 percent of the project, or
that “80 percent of the contribution comes from 20 percent of the contributors” [Boehm
1987] are popular instances of the rule.

The rule can, in fact, be derived analytically. A power law of the form (2) can be
converted to a rank-size distribution [Adamic and Huberman 2002] where the proba-
bilities are ranked as p1, p2, . . . , pn (p1 being the most frequent occurence, p2 the second
most frequent, and so on). That distribution is approximated by another rank-size dis-
tribution [Knuth 1998, p. 400] for which we have, for the first a percent of the ranked
probabilities,

p1 + p2 + · · ·+ pan
p1 + p2 + · · ·+ pn

≈ b for all n (3)

where

θ =
log b

log a
= 1− 1

k′
(4)

For b = 0.80 and a = 0.20 we arrive at the Pareto principle: the richest 20 percent of the
items have 80 percent of the resources. As this holds for any n, the principle applies
in a fractal, self-similar fashion to the top 20 percent, so that the topmost 4 percent of
the items have 64 percent of the resources, and so on. Note that there is no need for
b = 0.80 and a = 0.20; nor is there a need for a+ b = 1.

The rise of power laws to ubiquity status came when it was observed that networks
seem to exhibit such laws. A large variety of structures, ranging from linguistic word
nets to biological metabolic pathways, can be modeled by networks of nodes that com-
municate via links. In many of these structures, the distribution of links to nodes
follows a power law distribution. Such networks follow fat-tailed distributions that in-

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 2, Pub. date: September 2008.



2:4 P. Louridas et al.

carnate rules of the “winner takes all” type. Nodes that are heavily linked, hubs, are
not improbable and they do occur.

If we take the web as an example of a power law distribution, with sites as ver-
tices and links as edges, the resulting network exhibits a structure where, like US city
sizes, most sites are linked from a small number of sites; there are some sites, how-
ever, that have a much larger amount of incoming links [Albert et al. 1999; Huberman
and Adamic 1999]. Such hubs of connectivity are characteristic of scale-free networks.
Moreover, the ratio of hubs to the total number of nodes in the network remains con-
stant irrespective of the network size; networks that have this structure are therefore
called scale-free networks.

Scale-free networks seem to appear everywhere, from the Internet [Faloutsos et al.
1999] to actor collaborations [Barabási and Albert 1999]; a guide to literature, as of
2003, runs to four pages of author-date citations [Dorogovtsev and Mendes 2003, pp.
237–240]. Since a common law seems to describe all kinds of different phenomena,
the research agenda turned into seeking an explanation for the ubiquity of power
laws, and, in fact, various models have been proposed. These can be divided into two
groups [Mitzenmacher 2004]: treating power laws as the result of an optimization pro-
cess, or as a result of a growth model, the most popular of which is the preferential
attachment model [Barabási et al. 1999; Barabási and Albert 1999].

3. SOFTWARE POWER LAWS
We studied the existence of scale-free networks in modules comprising software sys-
tems. We chose modules of varying size and functionality, ranging from simple Java
classes to systems using self-contained libraries written in C, Perl, and Ruby. For our
purposes, the links connecting the modules are given by their dependencies. For two
modules A and B we add a directed link from B to A when B depends on A. This pro-
duces a directed graph. We explore the structure of both the incoming links and the
outgoing links.

Note that measuring fan-in and fan-out is not new, and has been used as a measure
for procedural complexity [Henry and Kafura 1981]. Here we are not interested in
measuring complexity, but in seeing whether incoming and outgoing links in different
levels of abstraction show similar patterns.

A summary of our findings is shown in Table ??. In each row we list the number of
nodes, the exponent for the incoming links and outgoing links, where applicable, and
the corresponding correlation coefficient.

3.1. Java
In our Java study network nodes are classes and the links represent the use of a class
by another class. We say that class B uses class or interface A when the code of B
references A. This includes class extension and interface implementation, as well as
member variables of type A, the presence of type A in method signatures, and local
(method) variables of type A. This list is not exhaustive: class B may use A during
program execution by using run-time reflection. This however cannot be determined
by statically examining the program code.

We studied the Java J2SE Software Development Kit (SDK) version 1.4.2 05, two
large Java applications, the Eclipse platform, version 3.1, the OpenOffice suite, and
a big Java middleware product, the BEA WebLogic platform, version 8.1 (Figure 2,
one row per dataset). The dependencies were extracted by trawling through the com-
piled bytecode of Java classes. A class’s bytecode contains all necessary information
pertaining to the use of other classes [Lindholm and Yellin 1999], as defined above,
and examining compiled code is much faster than parsing source code. The Java com-
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Table I. Software Power Laws.
Dataset size k r2

in/out in/out
J2SE SDK 13,055 2.09/3.12 .99/.86
Eclipse 22,001 2.02/3.15 .99/.87
OpenOffice 3,019 1.93/2.87 .99/.94
BEA WebLogic 80,095 2.01/3.52 .99/.86
CPAN packages 27,895 1.93/3.70 .98/.95
Linux libraries 4,047 1.68/2.56 .92/.62
FreeBSD libraries 2,682 1.68/2.56 .91/.58
MS-Windows binaries 1,355 1.66/3.14 .98/.76
FreeBSD ports, libraries deps 5,104 1.75/2.97 .94/.76
FreeBSD ports, build deps 8,494 1.82/3.50 .99/.98
FreeBSD ports, runtime deps 7,816 1.96/3.18 .99/.99
TEX 1,364 2.00/2.84 .91/.85
METAFONT 1,189 1.94/2.85 .96/.85
Ruby 603 2.62/3.14 .97/.95
The errors of TEX 1,229 3.36 .94
Linux system calls (242) 3,908 1.40 .89
Linux C libraries functions (135) 3,908 1.37 .84
FreeBSD system calls (295) 3,103 1.59 .81
FreeBSD C libraries functions (135) 3,103 1.22 .80

piler may optimize away some references, and therefore dependencies, but the effects
of such optimization cannot alter the overall picture.

3.2. Perl CPAN Packages
Perl is an interpreted language, probably the most popular among scripting languages.
A reason for its current popularity is the vast number and variety of available libraries,
called packages. Perl packages are namespaces that define program entities. The cor-
respondence between files and packages is one to many, as one file may define multiple
namespaces. A package B uses a package A when the code of B imports A to its own
namespace; B then depends on A.

Perl packages are archived and published by developers all over the world in the
Comprehensive Perl Archive Network (CPAN), where they are available as open source
software. An archived CPAN package may contain a number of files, and therefore a
number of Perl packages. CPAN also contains the Perl language itself, so that the entire
Perl corpus can be studied by studying CPAN.

We built the dependency graph for Perl packages by going through all CPAN pack-
ages and collecting references among them (Figure 3). The number of CPAN packages
increases daily; on October 21, 2004, CPAN contained 8,128 archives making a total of
27,895 packages.

3.3. Shared Libraries in Open Source Unix Distributions
Libraries in the Unix operating system and its intellectual offsprings (e.g. Linux,
FreeBSD — in what follows Unix refers to the whole family) come in two kinds. Static
libraries are statically linked to programs at build time; the programs include the li-
brary code in their code, so that they are self-sufficient at runtime, at the cost of code
bloat. Shared libraries are used by programs at runtime; programs are not encumbered
with library code, but the program must find the required libraries in the executing
system.
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(a) J2SDK 1.4.2 05 in (k = 2.09)
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(b) J2SDK 1.4.2 05 out (k = 3.12)
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(g) WebLogic 8.1 in (k = 2.01)
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Fig. 2: Java dependencies
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Fig. 3: Perl CPAN packages dependencies

Shared libraries have flourished to the point that an average Unix installation con-
tains several hundreds of them. Shared libraries depend on one another when one uses
the services of another, so a dependency graph emerges.

In Unix, these libraries are stored in a specific binary format called Executable and
Linking Format (ELF); an ELF file contains several sections, one of which, the dynamic
section, contains information pertaining to dynamic linking [TIS Committee 1995]. We
examined a Fedora Linux Core 2 and a FreeBSD 5.21 system. By reading the dynamic
section, we were able to build the dependency graph (Figure 4).

3.4. Microsoft Windows Executable and Dynamic Link Library Dependencies
There are three kinds of libraries in Microsoft Windows. Dynamically Linked Libraries
(DLLs) are used for dynamic linking at runtime; static libraries are used for static
linking, and import libraries are used at build time as stubs for DLLs to orchestrate
the dynamic linking process.

Like shared libraries on Unix, the use of DLLs has flourished so that an average
Windows installation contains several thousands of them. An executable program, or
a DLL, may depend on many DLLs; the evocative term “DLL hell” refers to the problems
starting from broken dependencies, when a different version of a DLL is found in lieu
of the required one.

Windows executables and dynamic link libraries are stored in a format called Com-
mon Object File Format (COFF), which also contains the information pertaining to dy-
namic linking. It is therefore possible to construct a dependency graph for Windows by
examining COFF files, which we did for a system running Windows 2000 (Figure 5).

3.5. FreeBSD Ports
Users of the FreeBSD operating system can run on their systems thousands of applica-
tions ported to it. When an application is ported it enters the FreeBSD ports collection
repository where all other ports are held. The ports collection provides standard facil-
ities for downloading, building, installing and uninstalling the corresponding applica-
tions. There are more than 10,000 ports, added roughly in a linear progression since
1995.

A port may have various types of dependencies on other ports. It may depend on
a shared library, or on an executable program or data file during runtime; or it may
require some executable programs or data files in order to be built (there are some
additional dependency classes that do not concern us here). Each port lists these de-
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Fig. 4: Unix libraries dependencies
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Fig. 5: Windows dependencies
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Fig. 6: FreeBSD ports dependencies

pendencies in a Makefile [Feldman 1979]. By processing each port’s Makefile we can
construct the dependency networks for those dependencies of interest to us. Our data
reflects the ports collection on October 25, 2004 (Figure 6).

3.6. TEX and METAFONT

TEX is a language for computer typesetting developed during 1977–1988 by Donald
Knuth together with METAFONT, a language for designing fonts [Knuth 1984a; 1986b].
Both were developed using an approach called literate programming [Knuth 1984b].
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Fig. 7: TEX and METAFONT dependencies

In literate programming the developer uses the WEB system: a combination of a docu-
ment formatting language, e.g., TEX, and a programming language. A WEB user writes
a program that contains both documentation and code; these are then separated by
the system producing elegant program documentation for human consumption and
program code for computer consumption.

TEX and METAFONT were implemented using a structured programming approach
(the underlying programming language was Pascal eventually). They comprise mod-
ules that are small program fragments. A module may include another module or use
a function or a global variable defined somewhere else. The full WEB code of both TEX
and METAFONT has been made available by their author [Knuth 1986a; 1986c]. It is
possible to work through their WEBs and build a dependency graph, which turns out to
display scale-free characteristics (Figure 7).

3.7. Ruby
Ruby is a pure object-oriented scripting language. Ruby code can be put into Ruby
library files that other code may require at runtime. Shared libraries can also be re-
quired by code that loads it as a Ruby extension. The Ruby 1.8.2 distribution contains
several hundreds of files requiring libraries, leading to a dependency graph whose link
distribution is scale-free (Figure 8).
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Fig. 8: Ruby dependencies

3.8. Other Evidence
A study of five UML class diagrams of Java projects [Valverde and Solé 2003] and
23 C/C++ projects found that class dependencies form scale-free networks (an ear-
lier study examined only Java projects [Valverde et al. 2002]). The class diagrams de-
scribed the architecture of the Java SDK version 1.2 (two diagrams), two video games,
and a distributed application, and were either delivered by the program developers
or, for the Java SDK, they came along a software development tool. In contrast to the
present study, where we use the full dependency graph, measurements concerned the
largest connected components of the graphs. All graphs exhibited power law distri-
butions. The proposed explanation was that software engineers may aim at optimal
communication between modules, while avoiding the number of modules with a large
number of dependencies; it is known that such strategies can lead to scale-free struc-
tures [Venkatasubramanian et al. 2004]. This design goal may relate to the fact that
the cost of software graphs, when measured in terms of cumulative component depen-
dency [Lakos 1996, p. 187], lies midway between optimal and worst-case structures—
software designers do not appear to do too bad, nor exceedingly well, either; their per-
formance is interesting since most probably it is the result of experience or common
sense to them, and not of conscious efforts to build scale-free structures.

A similar study of C/C++ programs found power laws both when graphs were con-
structed on the basis of collaboration between C++ classes and when graphs were
constructed on the basis of collaboration (calls) between C functions [Myers 2003].
Class graphs were generated indirectly, using the Doxygen documentation tool; the
call graphs were obtained from the CodeViz package. Refactoring, the restructuring
of existing code in order to optimize its design [Fowler 1999], is offered as a plausible
explanation for the emergence of scale-free networks in software. A simple stochas-
tic process, in which functions or classes are split according to some probability when
they are too long, reused instead of copied, and erased when used minimally, results in
scale-free distributions. This assumes an evolutionary view of software construction,
whereby software is continuously adapted to new requirements or bug fixing, and con-
tinually adapted to specific design goals; agile programming paradigms adopts such a
view [Martin 2003].

More fine-grained analyses of program structure reveal similar results [Wheeldon
and Counsell 2003]. A study using a Java source code analyzer found that twelve dif-
ferent metrics follow power laws. The metrics concerned the distribution of class refer-
ences, of methods, constructors, fields, and interfaces in classes, and the distribution of

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 2, Pub. date: September 2008.



2:12 P. Louridas et al.

method parameters and return types. A more detailed follow-up study examined sev-
enteen metrics at that abstraction level and identified fat tails, some of which would
be best described by a power law, while some of them would be best described by other
distributions [Baxter et al. 2006], something to which we return in Section 5.

The situation appears to be the same in the Smalltalk environment [Marchesi et al.
2004]. Smalltalk is a dynamically typed language, and relationships among classes and
methods can be found using reflection (with some allowances made for the absence of
static type information). A Smalltalk development system is also a Smalltalk program;
the class dependencies of two Smalltalk systems were found to follow a power law. The
implementation of methods with a specific name by classes was also found to follow a
power law.

It is not just the static structure of software that is scale-free. When software is
executed, an assortment of programming structures is allocated in the execution en-
vironment; these structures point to one another, so that a dependency graph during
program execution emerges. An early study in 1977 examined the list structures in
existence at the end of Lisp program execution. When the number of occurrences of
each atom was plotted against its frequency rank in logarithmic scale, the data com-
posed a line with slope approximately −1, as postulated by Zipf ’s law [Clark and Green
1977]. More recently, a study of object graphs in snapshots taken during the execution
of Java, C++, Smalltalk, and Self programs found that in all cases the object references
followed a power law [Potanin et al. 2005]. The findings parallel those of the studies
of the static structure of software: there is no typical object size, or scale; there is a
significant number of popular objects that are heavily referenced, and there is also a
significant number of objects that heavily reference others.

3.9. Remarks
Comparing Table ?? with Table II we see that the results are remarkably similar; this
is even more remarkable when we consider that we examine far more variegated data.

Table II: Review of other evidence.

Dataset size kin kout
Java, C/C++ [Valverde and Solé 2003] 27–5,285 1.94–2.54 2.41–3.39
C/C++ [Myers 2003] 187–5,420 1.9–2.5 2.4–3.3
Java [Wheeldon and Counsell 2003] NA 0.71–3.66
Smalltalk [Marchesi et al. 2004] 1,797–3,022 2.07–2.39 2.3–2.73
Object graphs [Potanin et al. 2005] 15,064–1,259,668 2.5 3

When programs are viewed at the class level, our research corroborates the previous
findings on class dependencies. Moreover, our examination of Java code is the only
one that deals with compiled bytecode. In this way our results report on the nature of
actual class dependencies, beyond those arrived at by dint of documentation diagrams
or the distributed source code, which may not include all classes (as happens in the
Java SDK); in addition, we are able to include in our analysis a very large closed source
product—in fact, the size of the product dwarfs any other product examined in previous
research.

Our analysis of TEX and METAFONT shows that power laws are not confined to
object-oriented languages, but also emerge in programs written using structured pro-
gramming, as advocated in the early 1970s by Dahl, Dijkstra and Hoare, among oth-
ers [Weiner 1978]. Programming language modules need not be classes in order for

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 2, Pub. date: September 2008.



Power Laws in Software 2:13

their dependencies to exhibit clustering; it seems that it is the concept of the module
that matters, and not its specific language implementation.

We advance these findings on the microscopic level with a macroscopic view of
software, not undertaken before, where software systems are examined at the li-
brary or package level. Component-based software development is increasing in im-
portance [Larsen (guest editor) 2000; Szyperski et al. 2002]. We found that on differ-
ent operating systems, in different implementation languages, large scale components,
like their fine-grained counterparts, also obey power laws.

Finally, the scope of the examined data, for each dataset, is more extensive than
what was undertaken before. Instead of examining single projects, each macroscopic
dataset contains material from a multitude of projects. While a Java or a C/C++ appli-
cation may contain thousands of classes, these are mostly developed in the context of
a single project, even if development is done by different people in different times. The
CPAN, however, contains thousands of packages written for independent projects—and
the same goes for the Unix libraries, the Windows dynamic link libraries and executa-
bles, and the FreeBSD ports.

4. IMPLICATIONS AND POINTS FOR FURTHER RESEARCH
The long, fat tails observed in our data impact on several aspects of software engineer-
ing. Software development is driven by various pragmatic considerations; in one way
or another, a software engineer must allocate intellectual effort, time, money, and other
resources efficiently. Unless a project is small, it is unavoidable that these resources
will be allocated unequally among the project parts.

In practice, resources are indeed allocated unequally; not all people put in the same
amount of work in the same project. We obtained an empirical indication of this fact in
open source software development, by creating rank-size plots for the commits made
by the committers of the Eclipse framework and the FreeBSD operating system. When
in logarithmic scale, both plots had a k shape; a slightly inclined part followed by a
sharply inclined part. The slightly inclined part corresponds to the bulk of the commit-
ters who make relatively few commits. Apart from them, there exist a few other com-
mitters who make many more commits. In other words, it appears that a core group
of people contribute most to the project, aided by a sizeable number of people who
contribute less or occasionally. Other studies on Linux show a similar “image of sev-
eral hundreds of central members who do most of the coding, and several thousands of
comparatively peripheral participants who contribute in a more indirect and sporadic
fashion” [Weber 2004, p. 71]. This is not something unique in software, as “anyone who
has worked or played on a team knows the apocryphal 80–20” rule [Weber 2004, p. 70]
(recall also the discussion in Section 1).

The other distributions we have encountered have a similar structure of inequality.
Some of the modules are more popular, and in this sense more important than others.
Engineers can therefore allocate resources more efficiently by concentrating on these
modules.

To get a measure of this, suppose we have a piece of software whose modules follow
a power law. If we select at random a percent of the modules, we expect, if our sample
is truly random, that we will cover around a percent of module usage. If, however, we
rank the modules by their connectivity to arrive at a rank-size distribution, and then
select the top a percent of the modules, we cover b percent of module usage, where,
following (4), b = aθ. Going from a percent to aθ percent is a marked improvement.
For example, suppose we have a power law distribution with k = 2.09 ((such as the
J2SE SDK) and we choose a = 0.05. For the complementary cumulative distribution
we have k′ = 1.09. Using equation (4) we get θ ≈ 0.0826, b ≈ 0.78. That is, we expect
that 78 percent of module usage is covered by the selected 5 percent of the modules.
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The distributions we have seen in software prompt some points where further research
might prove fruitful.

4.1. Reuse
Our work shows that reuse, in the projects we examined, is going on at a grand
scale, and that it exhibits some special characteristics. With insufficient cataloguing
of reusable components, the identification of suitable reusable components can be a
bottleneck. It seems, though, that developers are adept at identifying and reusing
promising candidates. The power law structures we have identified may play an im-
portant factor here: often reused components—those lying at the fat tail of the fan-in
distribution—may enter the developers’ everyday vocabulary and become established
parts of a software architecture’s design. The fact that the GTK GLib library is used by
728 ports in the FreeBSD repository, and the libxml by another 212 means that many
developers find it more natural to reuse a C data structure library or an XML parser,
than build their own from scratch.

It seems that the burgeoning of open source software smooths the study and reuse
of code fragments, i.e., code scavenging. Although code scavenging has not been mea-
sured in any way in the current work, the open publication of large, production quality
programs on the web provides ample opportunities of direct code reuse that are hard to
neglect, for open source and close source projects alike[Spinellis and Szyperski 2004].
This was illustrated by the effort undertaken to estimate the extent of the damage
caused by a bug found in the 1.1.3 version of the zlib library. According to the US-CERT
vulnerability note VU #368819, 49 systems were affected (where a system comprises
from applications to full operating systems).

Pessimists note that software reuse may not live up to very high promises due to the
special characteristics of software, as opposed to other kinds of artifacts; in particular,
that only a few reusable components can be reused profitably [Glass 1998]. Our data
permits some validation of this observation. Although all our projects show reuse in
action, the actual amount of the modules that are reused shows a marked inequality.
Recall that one of the most conspicuous characteristics of power laws is that they ex-
hibit a “winner takes all” pattern. Faithfully to that, some modules, those with a high
number of incoming links, tend to be overwhelmingly reused; at the same time, some
modules, those with a high number of outgoing links, tend to use many other modules.
The existence of huge class or module libraries may provide the potential for reuse, but
developers tend to reuse only a small fraction of such libraries. This could have impli-
cations on the financial aspect of building reusable components, in that the added cost
for making a component reusable will pay off very handsomely in some cases, less so in
the majority. As derived in equation (4), the top a percent of the modules will account
for around aθ of all module reuse.

We have no indication that the most heavily reused components are those of the best
quality. Although this might be the case, it is not necessary. Existing software plays
the role of a “shared infrastructure” on which new development builds. This shared
infrastructure may be suboptimal, but the cost of changing it is too high to justify such
efforts, which may lead to the “rich getting richer” model characteristic of power laws.

If we examine in more detail the emergence of power law distributions from reuse,
we saw in Section 3.8 that a process combining reuse and refactoring can arrive at
scale-free structures, suggesting a parallel with the emergence of power laws via op-
timization, where refactoring is seen as a redundancy removal mechanism. Further
research is required to substantiate the claim, however. For instance, in information
theory, power laws have been found in languages and the distribution of words in
texts. This, however, does not reflect a deep law in natural language or communica-
tion, as even randomly generated strings exhibit power-like laws [Li 1992]. Rather,
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very weak assumptions, such as a probability measure that favors small words (or, in
our case functions), and choosing a particular representation (i.e., rank as the inde-
pendent variable) are enough to arrive in similar distribution patterns.

4.2. Quality Assurance
During the past 30 years empirical studies of programming errors have found that
defects cluster conforming to Pareto rules or power law distributions [Endres 1975;
Möller 1993; Ohlsson and Alberg 1996; Fenton and Ohlsson 2000; Ebert 2001; Chou
et al. 2001; Ostrand and Weyuker 2002; Shull et al. 2002]. It seems that, on average,
“about 80 percent of the defects come from 20 percent of the modules [. . . ] Studies from
different environments over many years have shown, with amazing consistency, that
between 60 and 90 percent of the defects arise from 20 percent of the modules, with a
median of about 80 percent” [Boehm and Basili 2001].

We performed a check ourselves by examining the errors in a well-known program.
The errors of TEX have been minutely logged by its developer over the years [Knuth
1989]. In that context an error denotes any modification, be it an enhancement (seen
as an error of omission in the original specification), or a blunder, or an efficiency opti-
mization, and so on. This is an unconventional project, in that the program users have
been many, while the maintainer has been the same person throughout. Moreover,
the data set is small, so the results are only indicative. Still, we confirm the existing
findings, by finding that the errors of TEX follow a power law, as shown in Table ??.

We must note here, however, that program errors do not translate automatically to
program failures; an error may remain undetected throughout the whole lifetime of a
system, or it may appear so rarely that it makes no economic sense to fix it. Accord-
ing to a study on the costs of fixes, probably less than 10 percent of errors are worth
fixing [Adams 1984].

We propose taking into account the power laws present in software in order to focus
development efforts and save resources. Even though, as software developers, we may
not be able to locate troublespots in a system, we have a measure of the impact of our
efforts. Selecting modules at random, we may expect that around a percent of the de-
pendencies will not lead to bugs propagated from bugs in the selected modules. Using
equation (4) again, we find that by focusing on the top a percent of the modules, we
may avoid the propagation of errors to up to aθ other dependent modules. In general,
scale-free networks are largely immune from random failures, but very sensitive to
failures in the hubs [Albert et al. 2000]; this is also important in the security aspect of
quality assurance.

The success and failure of beta-testing can be illuminated if we consider the scale-
free distribution of bugs; beta-testers will discover quickly the small number of defects
that make up a large proportion of those that can be found; at the same time, there will
always be other effects, with a much lower probability to be found during testing, that
will continue to torment unlucky users during production. However, despite the best
of efforts, a system may still fail. Recovery-Oriented Computing accepts this as a fact
of life and demands that systems appropriate for rapid recovery should be identified
at various levels of abstraction [Candea et al. 2004]. This suggests that hub modules
could be suitable candidates.

4.3. Optimization
The earliest references to power laws in software research came in 1963; they concern
the Pareto principle and rank-size distributions in record references [Heising 1963],
and the Zipf-Mandelbrot law in the composition of dictionaries for efficient message
transmission [Schwartz 1963]. In both cases, the unequal popularity of the examined
elements provided opportunities for optimization. Similarly, the unequal popularity
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of modules means that some of them are much more likely to be looked up and used
than others. Consequently, in a mechanism that organizes and provides access to such
modules, we would expect efficiency gains if they were organized in a way that takes
into account their popularity.

This has been a subject of research in search algorithms. For example, if we use a
binary search tree for looking up the modules, and these modules follow Zipf ’s law, we
can benefit if we insert the keys in decreasing order of importance [Knuth 1998, p.
435]. Of course, we may not know each module’s popularity in advance. To deal with
this, researchers have devised self-organizing data structures that adapt to the search
frequencies [Albers and Westbrook 1998].

Such optimization may not matter a lot when modules are kept in a server and
developers browse them at their leisure; but it may matter quite a bit when a system’s
speed of execution depends on efficient storage and retrieval of the required modules.

For instance, on the Java Virtual Machine [Lindholm and Yellin 1999], when a spe-
cific class’s code is required, e.g., for creating a new instance, the runtime system looks
up the class code in a memory area called method area. The implementation does not
specify how the method area should be organized, but it is clear that it should be ef-
ficient. We examined two Java Virtual Machine specifications, the open source Kaffe
and the Java 2 Platform Standard Edition 5.0 implementation provided by Sun. Kaffe’s
documentation states that the method area is implemented using a hash table. We ex-
amined the source code of the Sun SDK to uncover the method area access method,
which turned out to be, again, a hash table. None of the implementations takes into
account the classes’ unequal popularity.

Self-organizing structures are not suitable for all situations; but they behave very
well when requests cluster around certain objects, as happens in compiler symbol ta-
bles and business transactions [Allen and Munro 1978]. For instance, a “move-to-front”
heuristic, where a referenced symbol is moved to the front of a list, could reduce sub-
stantially the run time of interpreted programs that store symbols in a linear symbol
table [Bentley and McGeoch 1985].

In some cases dynamic loading of modules takes account of their popularity. Hence,
references to Unix libraries in many implementations are resolved using a cache mech-
anism maintained by the ldconfig program (which might also benefit by taking into ac-
count library popularity). It would be interesting to see whether, in similar situations,
using a self-organizing structure would result in efficiency gains.

The unequal popularity of modules is also an important guiding factor in the design
and use of multi-level storage architectures. The power law structures we identified
both describe and prescribe a locality of reference phenomenon on access patterns of
a system’s code [Denning 2005]. By shaping a processor’s code cache or an operating
system’s disk buffer cache according to expected access patterns we may be able to
eliminate waste of memory resources or increase the storage system’s performance.
The frequency of machine instructions has already been used in optimizing CPU archi-
tectures: early designs used instruction frequencies to optimize the length of variable
length opcodes, while later RISC designs took a more radical approach and optimized
the processor’s instruction set around the most frequently used instructions.

4.4. Language and Library Design
One of the early discussions of power laws, more than 50 years ago, was in the do-
main of human languages; specifically, it was established that the frequency of words
seems to follow Zipf ’s law, or some related formula. This hints that we should examine
whether the same applies to computer programs.

As a prototype probe we examined the use of Unix system calls and C library func-
tions in Unix libraries. The Unix system calls provide the programmer with access
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points to operating system services. The system calls differ in various Unix implemen-
tations; we examined a Fedora Linux Core 2 and a FreeBSD 5.21 system. We plotted
the number of calls for each specific call, and ordered them by rank, obtaining a rank-
size distribution. We did the same for the functions defined in the standard C library.
The popularity of the 242 identified system calls in the Linux installation we checked
is almost a straight line in logarithmic scale; the same goes for the 295 system calls
identified in the FreeBSD system. 135 C standard library functions trace similar paths
for both systems; the results can be seen in Table ??.

That both the system calls and the C library functions seem to follow a Zipfian dis-
tribution allows some suggestions. First, in line with what we have already said, extra
care should be paid in the most popular, and critical, system calls or functions. The
effect of bugs or bottlenecks there would ripple through and reach many other parts of
a system. Secondly, this kind of research could be extended to other aspects of a pro-
gramming system, other computer languages, and other operating environments. In a
feature-rich language, we would expect that not all features are used with the same
intensity: some are reached rarely, only by the more experienced programmers.

At a lower level, it is interesting to research further whether similar patterns are
found in language keywords and computer instruction sets. We examined the CPU in-
struction frequencies for various operating systems and machine architectures. The
results are shown in Figure 9. In all cases there are instructions that are much more
frequently used than others, again pointing to a Zipfian distribution (note that even
though most of the data lies in the tails, making the fit doubtful, the point about the
inequality among the instructions holds). That does not mean that the same instruc-
tions are always the most popular. In FreeBSD 4.11, 15% of all instructions were push,
while in Linux 2.4 only around 2%, which raises the question whether Linux is less
modular than FreeBSD.
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4.5. Patterns in our Results
In Table ?? (p. 5) one may spot that kin < kout, r2in > r2out, and r2in � r2out for the
Linux and FreeBSD libraries. The findings of others in Table II (p. 12) show a similar
pattern for the exponents. A smaller exponent denotes a less unequal distribution.
The probability that a module has a certain number of incoming links decreases more
slowly than that of outgoing links. In terms of dependencies, it seems that it is more
likely to have modules that are very popular and used by many others, than to have
modules that use a large number of other modules.

One explanation for this fact could be that the marginal cost of incoming links is
considerably lower than that of outgoing links. Once a module is reused, the cost of
adding other reuse clients is minimal, because most support costs (such as bug fixes
and new releases) are simply distributed among a larger number of clients. One the
other hand, there is no mechanism for establishing economies of scale for using other
modules: there is always a considerable cost associated with adding new dependencies
to a system. One other reason for this difference could be that incoming links can
benefit from network effects [Economides 1996]: widely used modules are more likely
to be robust and better supported. Again, no such mechanism appears to aid outgoing
links.

The difference in the r2 measurements shows greater dispersion for the outgoing
links, especially in the Linux and FreeBSD libraries. It seems that outgoing links do
not fit the power law distribution as ideally as the incoming links; in general, questions
of statistical inference must be approached with care, as we see next.

5. CONCLUSIONS
The apparent ubiquity of power laws inspires intriguing images of common underly-
ing structures, patterns, and laws governing all sorts of complex systems. It is perhaps
wise to temper enthusiasm with caution, as indeed advocated when this ubiquity was
first intimated: “No one supposes that there is any connection between horse-kicks suf-
fered by soldiers in the German army and blood cells on a microscope slide other than
that the same [. . . ] scheme provides a satisfactory abstract model of both phenomena.
It is in the same direction that we shall look for an explanation of the observed close
similarities along the [various] distributions” [Simon 1955].

In fact, the situation is not without precedent. More than 60 years ago, the statistics
literature was teeming with evidence that a distribution fitted all kinds of phenomena.
“Lengthy tables, complete with chi-square tests, supported this thesis for human pop-
ulations, for bacterial colonies, development of railroads, etc. Both height and weight
of plants and animals were found to obey the [same] law even though it is theoretically
clear that these two variables cannot be subject to the same distribution. Laboratory
experiments on bacteria showed that not even systematic disturbances can produce
other results. Population theory relied on [. . . ] extrapolations (even though they were
demonstrably unreliable)” [Feller 1971, pp. 52–53].

The above does not refer to a power law distribution, but to a different one, the logis-
tic distribution; which was discredited when it was found that, in fact, other distribu-
tions could fit the same data with the same or even better goodness of fit. “Theories of
this nature are short-lived because they open no new ways, and new confirmations of
the same old thing soon grow boring. But the naive reasoning as such has not been su-
perseded by common sense, and so it may be useful to have an explicit demonstration
of how misleading a mere goodness of fit can be” [Feller 1971, p. 53].

In fact, power laws do not enjoy a monopoly in having a good fit over a range of
physical, economical, or social phenomena. There exist other distributions that also
have a good fit with respect to some of them [Laherrère and Sornette 1998; Shiode and
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Batty 2000; Mitzenmacher 2004; Baxter et al. 2006]. It seems that what is surpris-
ing is that power law distributions are easy to generate, and by a variety of mecha-
nisms [Fox Keller 2005]. This might be alarming, following what we have just quoted.

All these distributions, however, have in common long, fat tails where a small frac-
tion of the population takes over a large portion of the measured resource. It is based
on this that we have proposed a set of implications for software. Whether fat tails
result from a lognormal distribution, or a stretched exponential distribution, or yet
another, their existence is important to software engineering.

Fat tails appear in the relationships between software modules, be they functions,
classes, or libraries, open source or closed source, recently developed or vintage code.
The difference in scale and implementation between the modules we considered leads
us to believe that it is not the specific size or technology of those modules that somehow
goad a system into displaying these characteristics.

We refrain from offering a theory on how fat tails emerge in software; a compre-
hensive theory would show which, if any single, distribution molds software, and why
other promising distributions are incompatible. If there seems to be a common thread
linking all our data it is that it is structured around relatively independent modules
that offer their services to other modules, whose services they might, in their turn,
use; whether such structure tends, in general, to lead to power laws, in software or
elsewhere, is yet to be seen; the pronouncement of general laws must be approached
with care. But even though we might not know the underlying reason, the presence of
fat tails illuminates several facets of software engineering research, prescribes current
practice, and suggests important new research venues.

Appendix
The dependencies in the various networks considered in this work were derived by a
suite of custom-written programs.

The Java dependencies can in principle be derived by decompiling the bytecodes of
the Java files; we were able to work at a relatively higher level by using the Byte Code
Engineering Library (BCEL), developed by the Apache Software Foundation.

We studied the Perl CPAN packages with a bot, written in Perl, that connects to
CPAN, reads the complete list of CPAN packages, downloads and parses each one of
them, and establishes package dependencies by detecting use and require directives.

To build the Unix shared objects dependency network we wrote a Perl script that
uses the ldd and readelf utilities to find the dependencies between libraries; ldd gives
the transitive closure of a library’s dependencies and readelf can be used to sift the
direct dependencies only.

The FreeBSD ports collection was studied with a Bourne shell script; for each port,
the script calls make on its Makefile with appropriate arguments to obtain the values
of Makefile variables containing the required dependencies; the output was fed to a
Perl script that produced dependency lists for each port.

DLL dependencies can be found with the DUMPBIN command line tool, provided with
the Windows SDK. DUMPBIN displays information about COFF binary files. We used a
Perl script to drive and process the results of DUMPBIN for all files that import DLLs.

We studied TEX and METAFONT by using the original WEB sources for the two pro-
grams as provided by their author in the Comprehensive TEX Archive Network (CTAN).
We used WEAVE to derive the corresponding documentation in TEX format; from the in-
dices we extracted the dependencies using Perl scripts. We assumed that an index item
that was defined only once would be a global variable or function that we could use. To
analyze the errors of TEX we used the error log as posted by its author on CTAN. A Perl
script extracted the modules affected by each error.
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The Eclipse and FreeBSD committers were ranked by relying on the information
recorded in the CVS system, used by both projects. We extracted all commit information
using the CVS annotate command, and then used Perl scripts to rank the results.

To check the distributions of the Unix system calls and the C standard library func-
tions we used a couple of Perl scripts that collected the system calls defined in each im-
plementation. Another Perl script examined the libraries in the systems and counted
the uses of each system call or standard library function by parsing the output of the
readelf program. Ruby dependencies were derived using a Ruby script that catalogued
and examined all Ruby files in the Ruby 1.8 distribution. The CPU instruction frequen-
cies were derived from the operating system kernels using a series of Unix pipes and
further processed with Perl and Python scripts.

Power laws are easily cast into linear terms by taking the logarithm of the data
so that we can use simple least squares fitting. To avoid bias because of outliers, we
worked with the complementary cumulative definition (2), in which outliers are sub-
sumed, and then converted the results of the fit to the initial distribution. We wrote
a suite of Python programs that try to fit the data using the plain or the complemen-
tary cumulative distribution. The complementary distribution was not used for the
system calls and the C standard library functions that were gathered in rank-size dis-
tributions, nor for the city sizes figure. The correlation coefficient r2 is given with the
results.
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LAHERRÈRE, J. AND SORNETTE, D. 1998. Stretched exponential distributions in nature and economy: “fat

tails with characteristic scales”. European Physical Journal B 2, 525–539.
LAKOS, J. 1996. Large Scale C++ Software Development. Addison-Wesley, Boston, MA.
LARSEN (GUEST EDITOR), G. 2000. Component-based enterprise frameworks. Commun. ACM 43, 10 (Octo-

ber), 24–66.
LI, W. 1992. Random texts exhibit zipf ’s-law-like word frequency distribution. IEEE Transactions on Infor-

mation Theory 38, 6 (November), 1841–1845.
LINDHOLM, T. AND YELLIN, F. 1999. The Java Virtual Machine Specification, 2nd ed. Addison-Wesley,

Reading, MA.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 2, Pub. date: September 2008.



Power Laws in Software 2:23

MANDELBROT, B. 1953. An informational theory of the statistical structure of language. In Communication
Theory, The Second London Symposium, W. Jackson, Ed. Butterworth, London, 486–504.
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