
What’s on the menu…

Software Comprehension and Maintenance
April 2005

printk(“Topic=%s”, “RF-IDs”);

Achilleas Anagnostopoulos
Department of Management Science and Technology

Athens University Of Economics and Business

What are RF-IDs?

Radio frequency identification (RFID) is a method of
remotely storing and retrieving data using devices called
RFID tags. RFID tags contain antennas to enable them to
receive and respond to radio-frequency queries from an RFID
tranceiver. [Wikipedia]

RF-IDs are commonly used:
• Industry.
• Animal control.
• Security applications.

Expect to see RF-IDs soon in:
• Consumer products (clothes, cds…)
• Smart homes, digital canvas, personalized
_ info kiosks.
• E-cash, toll-booths, patient monitoring.

Active Tags
• Need power source.
• Higher cost but longer range and more memory.

Passive Tags
• Powered from reader.
• Cost is $0.40 => expected to drop to $0.05 by 2012.
• They are small! Range from 10mm to 5m.

LF tags(125-134 Khz)
• Small Range.
• Commonly used for
animal tracking.

HF tags(13.56 Mhz)
• book/pallet tracking
• ID badges/baggage
tracking.

UHF tags(868-956Mhz)
• Pallet tracking.
• Vehicle tracking.

RF-ID types

Microwave tags(2.45 Ghz)
• Long range access control for vehicles. (General Motors' OnStar system)

RF-IDs are neat! But how do we read/write them?

• Different tag types require different tranceivers.

• There are several commercial readers available.

• Each reader employs different comm. protocols.

• Each tranceiver requires a different connection interface.
(Serial, Parallel, USB, PCI or ISA cards)

• Software developers just need to read/write tags without
messing with the reader H/W itself.

SO, what we need is a standardized way for reading and
writing tags regardless of the underlying reader H/W and
communication protocols!

How can you implement a Hardware Abstraction Layer?

There are two schools of thought on this subject!

“That sounds interesting. Let’s make an RF-ID library!”
• Libraries work! However there are extra dependencies

for the developer.
• Unsatisfied developers will eventually roll-up their

own libs. We will end up with multiple libs having
different interfaces that developers need to support!

“That sounds interesting. Let’s put that in the kernel!”
• We provide a common, documented interface to the

underlying hardware.
• Developers may contribute code for supporting new

readers; no need to change the HAL.
• May however lead to a code-bloated kernel(like windows)

The linux kernel OR what makes my favorite OS tick
Kernel: Low-level system software that provides a HAL,
disk and filesystem control, multi-tasking, load-balancing,
networking and security enforcement.
Kernel ≠ Operating System

Current Version is 2.6.11.5 (available for d/l @ kernel.org)

The linux kernel was originally created by Linus Torvalds.
Nowdays, it uses contributed code from thousand
developers around the world. Released under the GPL.

A quick & dirty source count using the ‘wc’ tool tells
us that the 2.6 kernel consists of:

4.4 MLOC in C and 248K lines in Assembly

Adding an RF-ID service to the linux kernel

Event collector/dispatcher

Low level access to readers

Linux Kernel

Application

The low level part
auto-detects and

configures
connected readers.

The event collector
gathers events generated
by readers and processes
application commands.

Applications
interface RF-ID tags
in a generic way via
the event collector.

That’s all…

Any Questions?

	What’s on the menu…
	What are RF-IDs?
	RF-ID types
	RF-IDs are neat! But how do we read/write them?
	How can you implement a Hardware Abstraction Layer?
	The linux kernel OR what makes my favorite OS tick
	Adding an RF-ID service to the linux kernel
	That’s all…

