
1 0 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

Design Methods for Reactive Systems by Roel
J. Wieringa, Morgan Kaufmann, 2003, ISBN
1-55860-755-2, 500 pp., US$64.95.

A
ccording to Roel Wieringa, “any cre-
ative decision about a product is a de-
sign decision,” so decisions made during
the design process should be docu-
mented in the product specification.
Design Methods for Reactive Systems,

therefore, is mainly about techniques for spec-
ifying software systems and their design deci-
sions, while taking into account the systems
environment. In fact, as Robert Glass has
pointed out (Facts and Fallacies of Software En-
gineering, Addison-Wesley, 2002), missing re-
quirements, usually in the form of unstated as-
sumptions about the environment, are the
hardest requirements errors to correct.

Specification techniques
Wieringa devotes much of the book to ana-

lyzing specification techniques, describing their
notations, explaining their semantic details,

and offering guidelines for their correct use.
Although technically sound, some of his opin-
ionated views could be considered controver-
sial. Most of Wieringa’s guidelines are sagely
devised. However, heuristic as they might be,
they should always be taken with a grain of salt.

The book arranges specification techniques
into four groups. Written in laymen’s terms,
the first group, Function Notations, is useful
for reaching an agreement with the customer.
This group includes the mission statement, the
function refinement tree, and service descrip-
tions. The mission statement is the highest-level
description of the system under design (SuD)
as related to business goals. This is then re-
fined into a function refinement tree or in-
dented list (“a shopping list of things the sys-
tem must do”). This tree or list includes items
the user considers valuable: the use cases de-
scribed by service descriptions.

The second group, Entity Notations, de-
scribes the subject domain. In describing these,
Wieringa employs entity-relationship diagrams,
complemented by a dictionary of key terms.
The book’s E/R diagrams are drawn using a
notation similar to the Unified Modeling Lan-
guage (UML) to describe system configurations,
so you can’t consider them data models in the
usual sense. In fact, some of the diagrams might
even be irksome to database-oriented readers,
if they try to interpret them as database con-
ceptual designs.

The third group, Behavior Notations, fo-
cuses on transforming stimuli into responses,
with accompanying state changes in the SuD.
The book analyzes event lists (describing events
and their effects), decision tables, state transi-
tion tables, and state transition diagrams. It
covers both standard Mealy diagrams and
statecharts, which include state reactions as

bookshelf

On Notations and Their Use
Fernando Berzal

E d i t o r : Wa r r e n K e u f f e l � w k e u f f e l @ c o m p u t e r . o r g

� “Programming Programs with C++ Templates” by Ed Harcourt

A review of C++ Templates: The Complete Guide by David
Vandevoorde and Nicolai M. Josuttis.

� “Measuring What’s Measurable” by Harekrishna Misra

A review of IT Measurement: Practical Advice from Experts by the
International Function Point Users Group.

www.computer.org/software/bookshelf

O N L I N E R E V I E W S

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 1 0 5

BOOKSHELF

Moore diagrams, state hierarchies, and
parallelism. Once Wieringa explains
syntactic details, he thoroughly exam-
ines the semantic differences between
Statemate and UML; it’s possibly the
book’s most elaborate and outstanding
part.

Finally, the last group, Communica-
tion Notations, concentrates on the in-
formation exchange between systems
and complements the view offered by
Behavior Notations. Wieringa presents
his own variant of dataflow diagrams
and then generalizes it into a statechart-
like notation that he calls “communica-
tion diagrams.” Their only contribution
is the ability to include types in standard
DFDs. These diagrams can be accompa-
nied by allocation and flowdown tables,
or traceability tables, which help im-
prove requirements traceability.

With respect to this last group, one
thing I find particularly inappropriate
in the use of hierarchical diagrams is
repeating diagram elements at different
levels of the diagram hierarchy. Al-
though the author defends the value of
channel addressing, he unnecessarily
restricts hierarchical DFDs to destina-
tion addressing, therefore breaking di-
agram encapsulation.

Methodologies:
Putting it all together

The book’s final part describes three
specification methodologies. First is
postmodern structured analysis as a
Yourdon-style variant of structured
analysis that uses “a more elaborate
representation of the context.” Second
is Statemate, along with its hierarchical
activity diagrams (one more variant of
DFDs) and its well-defined execution
algorithm, whose formalization level
makes it suitable for automation. Fi-
nally, Wieringa introduces a UML sub-
set with a singular variant—that is, us-
ing communication diagrams to ensure
coherence between “static structure di-
agrams” (object and class diagrams)
and “behavior descriptions” (state-
charts). Wieringa ends his methodol-
ogy discussion with NYAM (Not Yet
Another Method), where he acknowl-
edges that the proper notation choice is

situation dependent. In fact, he recom-
mends notation subsets, using boxing
categories as a metaphor—from fly-
weight to heavyweight—interpreted as
giving more or less emphasis to the
project front end.

I must acknowledge that Design
Methods for Reactive Systems covers a
wide range of specification techniques
and offers valuable insight, although it
deviates somewhat from terminology
and notation standards. For instance,
Wieringa dismisses some common
terms because of their possible conno-
tations. Moreover, he introduces his
own share of new notations and vari-
ants. As Karl Wiegers said, we don’t
need more new models and notations;
we need more practitioners to effec-
tively apply known techniques (“Read
My Lips: No New Models!” IEEE
Software, Sept./Oct. 1998).

Nevertheless, Wieringa’s book can
be useful for software developers. If
you’re looking for ways to improve
your analysis skills, you might consider
classics such as Rethinking Systems
Analysis and Design by Gerald Wein-
berg (Dorset House, 1988). But, if you
want to fully understand the underpin-
nings of existing specification notations,
this book can be a good place to start.

Fernando Berzal is an assistant professor in the De-
partment of Computer Science and Artificial Intelligence at the
University of Granada and cofounder of iKor Consulting (www.
ikor.org). He is currently a visiting scholar at the University of
Illinois at Urbana-Champaign. Contact him at berzal@acm.org.

Clichés Can Be Both
Tiring and Helpful

Diomidis Spinellis
More Secrets of Consulting: The Con-
sultant’s Tool Kit by Gerald M. Wein-
berg, Dorset House, 2002, ISBN 0-
932633-52-8, 202 pp., US$33.95.

I enthusiastically devoured a library
copy of Gerald Weinberg’s The Psychol-
ogy of Computer Programming (Van
Nostrand Reinhold, 1971) more than

15 years ago. The book was out of
print for a long time, so I patiently
waited 10 years for its silver anniver-
sary edition to appear (Dorset House,
1998) to secure a copy for my book-
shelf. I reread parts of PoCP while
preparing this review and still recom-
mend it highly: a landmark work when
it appeared, PoCP still remains a must-
read for every software professional.

Sadly, More Secrets of Consulting
isn’t in the same league. Where PoCP
offers original insights, out-of-the-box
thinking, and perceptive observations,
MSoC offers many clichés formulated
as “laws” and an extremely tiring ten-
dency to baptize every idea with a
proper name. Thus, a single page bom-
bards us with references to the Helpful
Model, the Mirror, Carl’s Constructive
Corollary, the Big Picture, Master of
the Mirror, and Kenny’s Law of Auto
Repair. Furthermore, the valuable an-
notated bibliography appearing after
each PoCP chapter has given its place
to tens of footnotes promoting Wein-
berg’s other books and seminars. The
bibliography at the end of MSoC con-
tains more books authored or coau-
thored by Weinberg (14) than all the
other references combined (12).

I am, however, probably judging
MSoC against an impossibly high stan-
dard. The economic downturn made
many professionals turn to consulting
for a living, and consultants, typically
working in isolated environments, need
all the help they can get. MSoC em-
ploys the metaphor of a toolkit to pre-
sent qualities a consultant should have
or strive to cultivate. So, for example,
we read how we can use the Wisdom
Box to select the right assignments, the
Golden Key to open up new areas of
learning and practicing, the Courage
Stick to try new things, the Mirror to
see ourselves, and the Oxygen Mask to
lead a balanced life. The contrived
names aside, Weinberg still has a lot to
teach us, and the advice he dispenses is
certainly worth the book’s price.

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business. Contact him at dds@
aueb.gr.

