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Abstract

When designing and implementing cryptographic protocols one must avoid a
number of possible flaws. In this paper we divide possible flaws based on the flaw
pathology and the corresponding attack method, into elementary protocol flaws,
password/key guessing flaws, stale message flaws, parallel session flaws, internal
protocol flaws, and cryptosystem flaws. We then outline and comment on different
attack construction and inference-based formal methods, protocol analysis tools,
and process integration techniques and their effectiveness in aiding the
cryptographic protocol design process by discovering protocol flaws with regard to
the aforementioned proposed taxonomy of them.
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1 Introduction

A protocol is a set of rules and conventions that define the communication
framework between two or more parties. The parties are said to be communicating
(principals) and can be end-users, processes or computing systems. In
cryptographic protocols part of at least one message is encrypted.

When developing a cryptographic protocol it is desirable to uncover any flaws
as soon as possible. These flaws can occur because of incomplete or erroneous
specifications. However, even correct specifications do not necessarily guarantee
the correctness of a given implementation. Generally we can distinguish between
three categories of cryptographic protocol flaws [1] according to the flaw source:

• functional specification flaws occur due to a logical flaw in the protocol's high
level specification,

• implementation-dependent flaws [2] appear when a protocol's specification can
result in implementations of which at least one exhibits the flaw and at least one
other does not, and

• implementation flaws, are those faults that occur when a correct specification is
incorrectly implemented.

2 A Taxonomy of Cryptographic Protocol Faults

After a thorough study of the flaws belonging to the aforementioned general
categories we propose the following more detailed taxonomy of these flaws based
on the flaw pathology and the corresponding attack method:

[1] Elementary protocol flaws

[2] Password/key guessing flaws

[3] Stale message flaws

[4] Parallel session flaws

[5] Internal protocol flaws

[6] Cryptosystem flaws.

2.1 Elementary protocol flaws



In the elementary flaw category belong all flaws that occur in protocols providing
minimal or no protection against adversary attacks.

The flaw of the protocol proposed by [3] for authentication key exchange
between two communication parties belongs to this category [1]. The session key is
signed by A's private key before being sent to B. The flaw in this case is that a
signature is used to provide message confidentiality. Similar problems [1] [4]
appear in the CCITT X.509 authentication protocol [5]. The cause behind the most
important of them is that the messages are encrypted before being signed making it
therefore possible for an adversary to masquerade as the sender by changing the
initial signature with his own.

2.2 Password/key guessing flaws

The flaws belonging to this category occur because users often choose their
passwords from a small set of common words [6] [7]. In addition, in cases where a
protocol uses a pseudo-random key, it is possible that the key is constructed in a
way that can be reproduced by an adversary. As a result in case of an exhaustive
key search attack the adversary can use a restricted probable password key space
instead of the - much larger - possible key space. For this reason attacks based on
this flaw category are referred to [8] as dictionary attacks or as verifiable-text
attacks.

The user-supplied passwords could be rejected if they occur in a dictionary or
consist of too few characters. The smallest allowable password size Psize can be
calculated [9] depending on the password alphabet size Asize, the required password
life time Plife, the maximum rate at which passwords can be tried Grate and the
maximum password guessing probability Gprob and is given by the relationship:

Psize = log (Plife x Grate / Gprob) / log Asize

Password guessing attacks can be divided into three categories:

• Detectable on-line password guessing attacks: Every unsuccessful attempt is
detected and logged by the authentication server S. After a specific number of
unsuccessful attempts S will stop servicing the attacked password (thereby
creating a denial of service vulnerability).

• Undetectable on-line password guessing attacks: In this attack mode [10], the
attacker is trying to use a password that could be correct for an on-line
transaction. The attacker gradually verifies the password’s correctness from the
responses elicited from S. If the guess is incorrect, then the transaction is
aborted; the next guess will be tried in a new transaction. A failed attempt can
not be detected and logged by S, because S can not distinguish between a
genuine and a password guessing transaction.



• Off-line password guessing attacks: The attacker is using authentication
protocol message copies, guessing the password and verifying it in an off-line
environment. S is not participating and therefore the procedure can not be
detected.

Authentication protocols can be strengthened by introducing two basic
requirements:

• the authentication server is to respond only to fresh requests and

• the authentication server is to respond only to requests of verifiable authenticity.

These requirements are vital for dealing with detectable on-line password
guessing attacks [11], but are not relevant in relation to off-line attacks [12].

A number of protocols have been proposed for dealing with on-line [13] and off-
line [14] [15] [12] password guessing attacks. In addition, two tools have been
proposed for helping users pick stronger passwords [16]: password generators and
password monitoring programs. Password generators are programs that are made
available on systems in an effort to ensure "good password choices", which means
that the selected password is difficult to guess, and easy for the user to remember.
These programs have to be sufficiently random in the specific method in which they
select password. Password monitors are programs that accept a user's choice for a
password based on how likely it is that the password could be guessed. More
sophisticated password monitors may ensure the password is not a known easy-to-
guess one, check that this is not in a dictionary, analyse it to see if it looks too much
like a real word, and use an addition process named "password guesser", in order to
try and guess this password.

2.3 Stale message flaws

Often an adversary instead of a direct attack on a security protocol will try to utilise
genuine protocol message fragments that he can neither read nor legally create. For
this reason a lot of effort has been put into designing protocols that are not
vulnerable to replay attacks.

Studying message replay attacks [17] has proposed a taxonomy based on the
message origin and the message destination.

2.3.1. Message origin attacks

In run external attacks message fragments from one protocol run are used in
another run. An example of such an attack [18] is based on the secret key
Needham-Schroeder [19] protocol where the attacker can read the third protocol
message:



[1] A → S :  A, B, Na

[2] S → A :  {Na, B, Kab, {Kab, A}Kb}Ka

[3] A → B :  { Kab, A}Kb

[4] B → A :  {Nb}Kab

[5] A → B :  {Nb-1}Kab

and having enough time and processing power can guess the session key and use it
in a next protocol run as the original communicating parties will not know that the
session key has been compromised. This attack is of course only viable when there
are no mechanisms for outdating session keys. This attack is a run external attack
because during a protocol run a message from a previous run was used. A parallel
protocol run was not needed.

A parallel protocol run can also lead to a successful attack [17]. The BAN-
Yahalom [4] protocol contains the following steps:

[1] A → B :A, Na

[2] B → S : B, {A, Na}Kbs, Nb

[3] S → A : {B, Na, Kab}Kas, {A, Kab, Nb}Kbs, Nb

[4] A → B :{A, Kab, Nb}Kbs, {Nb}Kab

When Eve is performing an attack masquerading as A-Alice, after the protocol’s
step 2 she starts a parallel protocol run:

[1] A → B :A, Na

[2] B → S : B, {A, Na}Kbs, Nb

[1'] Ea → B: A, (Na, Nb)

[2'] B → Es: B, {A, Na, Nb}Kbs, N'b

[3] ............

[4] Ea → B : {A, Na (=Kab), Nb}Kbs, {Nb}Kab

Eve is using in the second run the concatenation of Na and Nb as a nonce. As
soon as Eve receives the encrypted message from step 2 of the second run she is
using it as the first encrypted part of step 4 of the first run. In the end Eve has
masqueraded as A-Alice to B-Bob and received the session key. This attack is also a
run external attack because during a protocol run a message from a previous run is



used. In this case however, the attack was based on a parallel protocol run.

Run internal attacks are using message fragments from the same protocol run.
Such an attack [20] on the Neuman-Stubblebine protocol [21] contains the
following steps:

[1] A → B :A, Na

[2] B → S : B, {A, Na, Tb}Kbs, Nb

[3] S → A : {B, Na, Kab, Tb,}Kas, {A, Kab, Tb}Kbs, Nb

[4] A → B :{A, Kab, Tb}Kbs, {Nb}Kab

During the protocol run, the attacker Eve, masquerading as A-Alice, receives a
part of message 2 and is using it to construct message 4.

[4']Ea → B : {A, Na (=Kab), Tb}Kbs, {Nb}Na(= Kab)

The new message 4 is the same as message 2, but the session key has been
changed with the nonce Na. In this way the last part of the protocol’s step 4 was
correctly implemented and therefore Eve could run a session with B-Bob
masquerading as A-Alice, and make B-Bob accept the session key that belongs to
Eve. This attack is a run internal attack because during a protocol run a message
from the same run is used.

2.3.2 Message destination attacks

One other attack [20] on the previously discussed BAN-Yahalom protocol is the
following:

[1] A → Eb:A, Na

[1'] Eb → A:  B, Na

[2'] A → Es: A, {B, Na}Kas, N'a

[2''] Ea → S: A, {B, Na}Kas, Na

[3'] S → Eb: {A, Na, Kab}Kbs, {B, Kab, Na}Kas, Na

[2] ............

[3] Es → A: Ni, {B, Kab, Na}Kas, {A, Kab, Na}Kbs

[4] Ea → B: {A, Kab, Na}Kbs, {Ni}Kab

This attack demonstrates a message reflection problem, i.e. the return of a
message to the original sender. Straight replays of message 2' to message 2'', are



those where the message is sent from the sender to the supposed receiver even
though the message semantics are not preserved (text has been added or the
message has been delayed). Message deflection of message 3' to message 3, occurs
when protocol exchange messages are redirected to a third entity.

2.4 Parallel session flaws

Parallel session attacks (or oracle session attacks, multi-role flaws) are flaws that
allow an adversary to gain the desired information by exchanging suitable protocol
messages.

Participants in these protocols can be distinguished [22] either as single role, or
as multi-role participants. In single role protocols there is a one to one relationship
between a participant and his role. In a multi role protocol this relationship is a one
to many. In both cases a participant’s presence can only be interpreted as a specific
role and not as the specific participant’s name. Therefore a participant p can at
different times act in role A and role B. It can be proven [22] that any analysis
method that fails to distinguish between the possible roles of a participant and the
participant’s name will not yield dependable results.

In the following paragraphs we will study a parallel session single role flaw and
a parallel session multi role flaw [1] using the three-pass protocol [23]:

[1] A → B :{M}Ka

[2] B → A :{{M}Ka}Kb

[3] A → B :{M}Kb

The protocol can be used for transferring a secret message without the use of a
trusted third party. It does however not provide authentication as A and B do not
share any secrets.

The protocol utilises a cryptographic commutative function, which satisfies the
relationship:

{{M}Ka}Kb  = {{M}Kb}Ka .

2.4.1 Parallel session single role flaws

In a single role run of the protocol the following situation can occur [1]:

[1] Alice     → Eve Bob : {M}Ka



[2] Eve Bob    → Alice : {M}Ka

[3] Alice       → Eve Bob :  M

Participant A-Alice, sends a request to B-Bob. The message is however
intercepted by Eve who masquerades as Bob and uses steps 2 and 3 for intercepting
the cleartext of the secret message M. This attack could have been prevented if
participant A had a way to distinguish between different message types and could
therefore prevent the transmission of messages of type unencrypted.

2.4.2 Parallel session multi role flaws

The protocol can be used by multi role participants as follows:

[1.1] Alice A   → Eve Bob B : {M}Ka

[2.1] Eve Bob A → Alice B : {M}Ka

[2.2] Alice B      → Eve Bob A : M

[1.2] Eve Bob B → Alice A : any text

[1.3] Alice A   → Eve Bob B : {any text}Ka

In this case [1], after step 1.1 Eve intercepts the message from Alice. After step
2.1 Eve establishes a new session masquerading as BobA in order to return to AliceB

the message that was sent by AliceA. In step 2.2 AliceB returns the message M
decrypted which is of course received by Eve. Eve’s mission has been accomplished
since she is now in possession of a decrypted version of M. Eve can potentially
complete the session so that Alice will not realise that the message has been
intercepted.

2.5 Internal protocol flaws

Internal protocol flaws occur when at least one of the protocol participants fails to
complete all requisite actions.

A typical example of this flaw [1] is step 3 of the three pass protocol. Before the
message is sent it is desirable for the participant A to ensure that the message is



encrypted. As mentioned above, this requirement should be part of the protocol
specifications and implementors should always ensure that it is always satisfied.

2.6 Cryptosystem flaws

Encryption algorithms and related protocols are designed and used in order to
satisfy some data confidentiality or authentication requirements. A specific
implementation may satisfy all properties required by the algorithm and the
protocol specification, but exhibit additional properties that compromise the
confidentiality or authentication requirements. In that case cryptosystem - related
flaws [24] [25] [1] are said to occur.

Often a poor implementation of a given cryptosystem is all that is needed in
order to compromise it. [25] details a number of protocols based either on public
key algorithms (e.g. the low entropy protocol) or on secret key algorithms (e.g. the
single key protocol) that exhibit such flaws.

3 FORMAL CRYPTOGRAPHIC PROTOCOL
ANALYSIS AND DOCUMENTATION METHODS

3.1 Introduction

In the last decade a number of methods and tools have been published and
implemented that detect cryptographic protocol flaws by analysing and
documenting their operation [26]. The most important methods can be divided into
two categories [27] according to their operation domain:

Attack-construction tools construct probable attack sets based on the protocol's
algorithms algebraic properties. These methods [28] [29] [30] [31] [32] [33] are
targeted towards ensuring authentication, correctness or security properties and are
not dependent on the correctness of a proposed logic. Their disadvantage lies
mainly in the big number of possible events that must be examined.

Inference-construction tools are utilising either modal logic, logic of
knowledge, or logic of belief. These methods [4] [34] [35] include belief logics
which are potentially much faster, capable of analysing large, complicated protocols
that the attack-construction tools are incapable of analysing in a reasonable time,
and are widely used. A number of specific problems associated with them [27] [36]
[37] [20] [38] range from their inability to analyse zero knowledge protocols or to
address only authentication  or to detect parallel session multi-role flaws to the
difficulty of transforming messages and prepositions to idealised messages.

3.2 Flaw detection by attack construction tools



Flaw construction tools can be distinguished into three categories based on their
theoretical foundation. These categories are:

3.2.1 Methods based on validation languages and tools that are not specifically
    developed for analysing cryptographic protocols.

 

 These methods analyse a cryptographic protocol as any other program whose
correctness they are trying to prove. This is done by specifying the protocol: as a
finite-state machine [32] [33], using predicate calculus [29], or within a process
algebra [39] [40].

 Some researchers [32] [33] map the protocol to a finite-state machine. The
analysis method proposed by [32], verifies the basic properties of a number of
protocols, detects basic flaws, but can not detect flaws due to the re-use of old
messages as no temporal assumptions are used. The method proposed by [33] also
verifies the basic properties of a number of protocols, but exhibits a number of
problems as the number of states increases. In addition, in order to deal with flaws
related to the re-use of old messages the author proposes to incorporate into the
analysis data from the session key message contents.

 Another approach [29] is based on predicate calculus extensions. This method is
using the specification language Ina Jo [41] and the Formal Development
Methodology (FDM). Formal specifications written in Ina Jo specify definitions,
initial conditions, transforms, axioms, and criteria. Criteria are used to specify
critical requirements for a secure state. Ina Jo formal specifications can then be
executed and verified by tools such as Inatest. This approach has been successful in
locating both active and passive attack flaws, since in both cases the intruder is a
separate entity in the model's mathematical framework.

 A more recent approach [39] [40] is based on modelling the communicating
principals and the intruder as CSP processes. The proposed method can be used to
formalise messages, traces, intruders, and nonce challenges. The Failures
Divergence's Refinement Checker (FDR) tool is a general purpose tool that can be
used to determine whether an implementation refines a specification. In the case of
protocol authentication, checking for refinement amounts to testing whether each
trace of the implementation is also a trace of the specification.

 Although these methods have been judged as an important contribution to the
field, research has turned into more specialised directions. The driving force behind
this turn is the desire to use cryptography domain specific reasoning knowledge.

 

 3.2.2 Expert system, scenario based methods

 

 The method due to [31], known as the Interrogator Model, is using a system based
on a Prolog solver to guide the designer towards examining whether a specific



protocol can lead to an undesirable situation, such as compromising a key.
Although this method can not guarantee absolute safety, it works very well in
identifying specific protocol flaws.

 The method has been successfully used to find various known flaws in protocols
such as the [42] [19] [43] [44] and [45]. No previously undetected vulnerabilities in
well known protocols have been discovered using this method. The tool's
applicability is limited by the operators it supports (conventional and public key
encryption, exclusive-or and limited finite-field exponentiation).

 

3.2.3. Algebraic simplification theoretic model methods

Important methods in this category have been proposed by [28] [46] and [30].
Among them the NRL Protocol Analyser [30] is believed to be the most promising
method of assuring correctness in cryptographic protocols. This method specifies
the protocol and its analysis as a set of transition rules governing the actions of
honest principals as well as rules describing possible - non intruder caused - system
failures, a set of operations available to the principals, and rewrite rules obeyed by
the operations.

The NRL Protocol Analyser has been successfully used to uncover known flaws
of all our proposed taxonomy types, especially stale message flaws. The NRL
Protocol Analyser has also been used to locate a series of previously unknown flaws
in a number of protocols [45]. The current implementation's main drawback is the
paucity of reduction operators which are limited to conventional and public key
encryption operators. In addition, as with most rule rewrite systems, it is not clear
how well the system scales as more complicated algorithms will need to be
expressed using an ever increasing set of rules.

3.3 Inference based methods

Inference based methods are based on formal protocol specification modelling using
the Logics of Knowledge and Trust. A representative such method, BAN Logic [4],
is widely used for authentication protocol verification. BAN Logic considers
authentication as a function of message freshness and integrity and is using a
formal model for the authentication protocol messages based a predefined set of
axioms.

BAN Logic has been successfully used to uncover a number of unknown flaws
[5] [19] [47] as well as superfluous operations in widely used protocols [5] [48] [19]
[49] [47]. BAN Logic can not be extended to zero knowledge protocols [20], and
can not detect parallel session multiple-role flaws nor stale reflected message flaws
[37], although it can detect run external attack flaws [4]. Furthermore, BAN Logic
does not cover implementation-related flaws such as those included in [21] and
detected in [2].



 A number of other alternative logics have been proposed correcting or
extending the existing framework [34] [35]. GNY Logic includes a parser that can
detect whether a message has been sent in the past. However, even this extension
does not completely detect stale message flaws.

The most important drawback of BAN-type logics is the lack of strict
application techniques for converting messages and beliefs into idealised messages.
A number of improvements have been suggested [50] [36] to deal with this
problem. Despite this problem, inference based methods, and BAN Logic in
particular is used in many new protocol specifications as for example in the
analysis, specification and verification of Internet commercial transaction protocols
[51] [52]. As BAN Logic can not prove that a protocol is secure, but can provide
information about the possible occurrence of undesirable properties it can be used
as a complement to the NRL Protocol Analyser [30].

3.4 Design process integration aspects

The multitude of protocol analysis approaches, methods, and tools hinders their
integration into the protocol design process. Every different protocol analysis tool
provides its own formal specification language; different from the message-oriented
protocol descriptions that are typically published. Two approaches have been
proposed in order to bridge the gap between the protocol analysis formalisms and
the protocol design process.

One approach [53], proposes the use of an Interface Specification Language
(ISL) in order to allow arbitrary protocol design processes to interface to the
analysis tool. This approach has been used to provide a front end to the Automatic
Authentication Protocol Analyser (AAPA) [54] [55] a tool that uses an extension of
the GNY logic for proving protocol properties.

A second approach [56], proposes the use of a Common Protocol Specification
Language (CAPSL) to bridge the gap between the typical informal presentations of
protocols given in papers and the precise characterisations required to conduct
formal analysis. The proposers of this approach hope that proponents of different
analysis techniques will offer algorithms for compiling the CAPSL language into
whatever form they require making it therefore possible to directly compare
technique protocol assumptions and analysis results. This work is in progress, has
not yet been completed, and it is described in a WWW site for suggestions,
refinement and standardisation of the language definition.

4 Conclusions

Having examined a number of cryptographic protocol flaws we provided a possible
taxonomy based on the flaw pathology and the corresponding attack method:
exploitation of protocol or implementation weaknesses, password/key guessing,



message re-use, or the establishment of a parallel session. The use of formal
methods can definitely aid in the analysis, verification, validation, and security
valuation of existing and proposed cryptographic protocols. As distributed systems
and open interconnected networks are increasingly being used for transactions of
commercial value, the transfer of sensitive personal data, and as society's
infrastructure fabric increasingly depends on them the formal analysis of
cryptographic protocols will be an important research topic.

The outlined presentation of general purpose formal analysis tools used in the
cryptographic protocol domain as well as domain specific approaches presented in
section 3 is an initial attempt at categorising tools and providing our view of their
relative strengths and weaknesses with regard to the aforementioned proposed
taxonomy of cryptographic protocols flaws. We believe that in the coming years
formal method based tools will increasingly be used during cryptographic protocol
design process, especially in the initial stages of the whole process.
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