
Outwit: Unix Tool-based Programming Meets the Windows World

Diomidis D. Spinellis
Department of Information and Communication Systems

University of the Aegean
GR-83200 Karlovasi, Greece

dspin@aegean.gr

Abstract

The ubiquity of Windows-based desktop environments has not been matched by a corresponding emergence of
tools supporting the Unix tool composition paradigm. Outwit is a suite of tools based on the Unix tool design
principles allowing the processing of Windows application data with sophisticated data manipulation pipelines.
The outwit tools offer access to the Windows clipboard, the registry, relational databases, document properties,
and shell links. We demonstrate a number of applications of the outwit tools used in conjuction with existing
Unix commands, and discuss future directions of our work.

“GUIs normally make it simple to accomplish
simple actions and impossible to accomplish
complex actions.” — Doug Gwyn

1 Introduction

The remarkably productive environment based around
the Unix tool composition philosophy [KP84] is increas-
ingly made irrelevant by the ubiquity of Windows-based
desktop environments. In those environments huge,
monolithic, “user-friendly”, GUI-based applications, bi-
nary file formats and databases, and an API of byzantine
complexity render useless a large proportion of the Unix
toolbox and associated data manipulation techniques.
Often, even the blunt application of a tool like strings
on a Windows binary file such as a Word document can,
as part of a small pipeline, produce results that can not be
otherwise obtained from the corresponding GUI-based
applications.

The increasing sophistication of Windows-based com-
pilers, libraries, and operating system functionality in
conjunction with the availability of open-source Unix
tool implementations have led to a number of ports of
a large portion of the Unix toolchest to the Windows en-
vironment. Although such ports provide a rich set of
tools, they often fail to address tool integration with the
rest of the environment.

Over the last few years we have nurtured and sharp-
ened outwit: a small suite of tools, based on the Unix

programming philosophy, yet tightly integrated with
the Windows environment. The tools are designed to
be seamlessly used with traditional parts of the Unix
toolchest as parts of shell-based pipelines. We use these
tools on an everyday basis both casually to enhance our
system’s usability, and as building blocks for more so-
phisticated applications.

The aim of this paper is to demonstrate that GUI-based
platforms, and Windows in particular, are not incompat-
ible with the Unix tool-based approach to prototyping,
reuse, shell programming, and implementation based on
incremental refinement. In the following sections we
will outline the design principles of our approach, de-
scribe the tools in our collection, comment on their im-
plementation effort, illustrate some typical uses, and dis-
cuss our work in the context of other efforts and future
directions.

2 Design Rationale and Principles

Typical GUI-based environments and applications pro-
vide a fixed set of features wrapped in a standardized
user-friendly interaction paradigm based on windows,
icons, menus, and pointing (WIMP). Although this ap-
proach enables inexperienced users to quickly master
applications and produce results, its limits rapidly be-
come apparent when one tries to perform a task not fore-
seen by the original developers of the application. In
many cases it is difficult to combine different applica-
tions together to achieve a complex task, repetitive tasks

can not be automated, and interaction sequences can not
be manipulated for future reuse. In short, GUI based ap-
plications are inflexible factories rather than tools; end-
users must accept the end products or wait for central
planning to devise a new ones.

Some applications, to overcome these problems, provide
an object model and a script-based programming inter-
face. Such interfaces, however, still carry with them the
weight of the application, do not provide a clean way
to combine different applications, and, in our experi-
ence, are typically fragile, and difficult to use in a non-
interactive setting.

An alternative approach to productivity in an interactive
environment was popularized by the Unix tool-based
and shell programming approach [KP84]. Unix tools
can be easily combined to form powerful data manipula-
tion sequences. Where such sequences are to be reused
or repeated Unix shell-based programming can be used
to package and automate them. The advantages of the
Unix-based approach to interaction prompted us to ex-
amine the possibility of offering these benefits within the
context of the ubiquitous Windows environment. A large
part of the Unix toolchest has already been ported to
Windows as part of open-source and commercial efforts.
However, the tools provided typically function isolated
from the GUI environment within a text-based command
shell. Data interchange with the GUI applications is of-
ten limited to the use of textual files which are in any
case rare as most GUI applications use undocumented
binary file formats. We therefore focused our attention
on providing mechanisms for integrating the capabilities
provided by the Unix toolchest with the data sources and
sinks available in typical GUI applications.

Out tools were designed along the principles used by
most Unix-based tools:

do a single job well,

avoid decorative headers and trailing information,

accept input created by other tools,

generate output that can be used by other tools, and

be capable of stand-alone execution without user
intervention.

It is interesting and instructive to contrast tools based
on these principles against the behemoths that populate
GUI-based office productivity suites.

We aimed our tools to areas where data amenable to
Unix-style pipeline processing could be extracted from
difficult-to-access Windows sources. All the tools are
console-based native Win32 applications using their
standard input and output as the data source and sink.
They can be used both from the standard Windows shells
(command and cmd32) and from Unix-derived shells
like bash and ksh [Kor94].

Due to the complexity of the Windows API the exter-
nal tool simplicity is often inversely proportional to the
code required to implement the tool. We found however,
that the effort required to implement such tools was of-
ten amortized by less mouse clicks and other repetitive
GUI operations within a matter of days.

3 Tool Descriptions

The tools we developed aim to make data that is typ-
ically accessed through GUI-based applications usable
via standard command pipelines. We therefore aimed at
providing integration mechanisms for the Windows clip-
board, relational databases, the Windows registry, OLE

document properties, and shell-namespace links. In the
following paragraphs we describe the facilities offered
by each tool.

3.1 Clipboard Integration

Most Windows GUI applications and a number of the na-
tive system controls (widgets) allow the user to copy and
paste data to and from a global clipboard area. This user-
driven interprocess communication mechanism is used
for sharing data between applications. The clipboard
data can be in an application-native format, in which
case it can be processed only by the application family
that is aware of that format, or it can be in a number of
documented public formats. The Windows system will
automatically convert between a number of compatible
formats such as different types of bitmaps.

Our winclip tool provides shell-based clipboard access.
When run with a -c (copy) argument it will copy the
data it reads from its standard input to the Windows clip-
board:

ls -l | winclip -c

Currently all data is copied to the clipboard as text.
When winclip is run with a -p (paste) argument it will

paste the data of the Windows clipboard to its standard
output:

winclip -p | wc -w

Currently winclip supports the following clipboard data
formats for its output:

text,

bitmap — output in ppm [P 93] format, and

drag file list — files “copied” using the Windows
Explorer interface are output as lines of the respec-
tive file paths.

3.2 Database Access

The Windows platform is increasingly used as a client
for database systems. Database communication is of-
ten performed using the Open Database Connectiv-
ity (ODBC) application programming interface [Mic97].
ODBC is based on the Call-Level Interface (CLI) spec-
ifications from X/Open and ISO/IEC [ISO95] for
database APIs and uses the Structured Query Language
(SQL) as its database access language. An ODBC driver
manager, provided as part of the Windows platform,
allows the installation of the drivers supplied by most
database vendors. Using an appropriate ODBC driver
Windows-based applications can transparently commu-
nicate with a wide variety of database engines. Although
most database vendors supply text-based SQL database
access tools, these are typically database specific and
difficult to use for shell-based programming.

Capitalizing on the strengths of the ODBC interface we
wrote the odbc tool which prints the results of an SQL

SELECT command run on any database for which an ap-
propriate data source has been defined:

mail ‘odbc uDB ’select email from users’‘

Two arguments must always be specified as part of the
tool invocation: the name of the data source driver (the
database communication configured in the local ma-
chine), and a select statement. In addition, one can spec-
ify the record and field separator that will delimit the
output results, and a user identifier and an authorization
string pair that will be used for logging into the database.
All data types are currently output as text according to
the default driver-supplied data conversions.

3.3 Registry Operations

The Windows registry is a database that stores system
management information in a hierarchically structured
tree. Each node in the tree, called a key, can contain
both subkeys and data entries. A data entry can contain
a text string, an integer, or binary data. Windows sys-
tems use the registry for storing all configuration data
including data related to the operating system, computer
hardware, applications, and user preferences. The reg-
istry is physically divided into a part containing config-
uration information about the machine and the operating
system, and a part containing user-specific information.
The user-specific part is often replaced during the login
procedure to allow user roaming or the sharing of a ma-
chine among different users. In addition, a special cat-
egory of keys, called dynamic keys, are updated at run-
time by device drivers to monitor quantities such as data
transfer rates, processor utilization, and dropped pack-
ets. The registry can be manipulated through the GUI

registry editor regedit. Although this program supports a
text import/export format and an, almost undocumented,
command-line interface, the textual representation used
is not amenable to Unix-tool based processing and the
command-line interface is too rigid for many useful ap-
plications. Specifically, the text format used by regedit
places the key names in a separate line followed by a
number of key values. In addition, the command-line
invocation of the tool executes only in the background
and does not allow the text-based representation to be
redirected as input or output.

In order to overcome these difficulties we designed and
implemented winreg, a text-based tool that can be used
to read and modify registry data. Each text line repre-
sents a single key. Three fields, separated by a user con-
figurable field separator, contain the key name, its type,
and its value. The tool can be invoked with the name of
a part of the registry as its argument to print the textual
representation of the registry tree from that point down-
wards on its standard output, or it can read the textual
representation of some registry keys from its standard
input and enter them into the registry. In addition, one
can specify whether the output of winreg shall include
the key names, types, or values. As an example:

winreg -nt HKEY_LOCAL_MACHINE\System\
\CurrentControlSet\Control\ComputerName\
\ComputerName

will display a machine’s name.

3.4 Document Properties

A number of applications in the Windows environment
expose document meta information such a document’s
title, author, keywords, and number of pages it contains
by using a standard document information property set.
This set is part of Microsoft’s Component Object Model
(COM) structured storage facilities. Three property sets
are currently defined:

the summary information containing the document’s
title, subject, author, keywords, comments, revi-
sion, editing time, the time the document was cre-
ated, printed, and saved, the number of pages,
words, and characters, and the name of the creat-
ing application,

the document summary information containing the
document’s category, presentation target, number
of paragraphs, lines, notes, slides, and the names
of the company and the project’s manager, and

the user-defined property set where users can create
and store named properties to store additional doc-
ument information.

Document properties are typically accessed from within
applications, or through a file context menu of the Win-
dows GUI shell.

Our docprop tool provides Unix shell programmable ac-
cess to these properties. The program takes as arguments
an optional output format specification string and a list
of filenames. The format specification string can contain
arbitrary text, system or user-defined property names en-
closed in braces, and the usual C language backslash es-
capes. When executed the program will iterate over the
filename list and, for each file, will output the format
string replacing the property names enclosed in braces
with their respective values. In addition, docprop pro-
vides an internally synthesized property name called
Filename to allow the printing of each filename. The
following example will print the document name and au-
thor name of all Word documents in a directory:

docprop -f ’{Filename}\t{Author}\n’ *.doc

3.5 Shell Links

Shell links, also known as shortcuts, are data objects that
contain information used to access another object in the
GUI shell’s namespace. They are superficially similar to

the Unix symbolic links; their most important difference
is that the file or object they point to is not resolved au-
tomatically by the kernel when an application accesses a
link. In addition, if the target object is moved, the system
will attempt to locate the target object in its new position
when the link needs to be resolved. Links typically op-
erate only at the level of the GUI shell. The types of
objects that can be accessed through shell links include
files, folders, disk drives, and printers.

Despite our philosophical objections to the shell link
concept we found the need for a tool to resolve such
links at a textual level. We thus discovered that the oper-
ation that is trivially performed on a Unix system by the
readlink(2) system call needed 60 lines of C code and 11
calls to the Win32 API in the Windows environment. Our
resultant readlink tool accepts as its single argument the
name of a shell link and outputs the name of the link’s
target. Dynamic resolving of targets on the move works
as advertised:

$ readlink s.lnk
C:\src\win32lib\port.c

$ move port.c foo
C:\src\win32lib\port.c =>

C:\src\win32lib\foo\port.c [OK]

$ readlink s.lnk
C:\src\win32lib\foo\port.c

4 Implementation Notes

The realization of all tools is based on the possibility to
call Win32 API functions from within so-called console,
i.e. text-based, applications. Although all examples on
the use of the Win32 API functions provided with the Mi-
crosoft documentation are complete GUI-based applica-
tions, in practice most API functions can be called with-
out a problem from text-based programs. This technique
forms the basis for integrating the text-based and the GUI

worlds. All our programs, implemented in C and C++,
call the appropriate Win32 API functions to transfer data
to and from the GUI world and use stdio I/O functions to
interface with the Unix shell world.

At 1440 lines of code the total implementation effort for
the outwit suite is embarrassingly modest given the ca-
pabilities it provides. The code size of each tool is de-
tailed in Table 1. Most tools are at the same time more
versatile, powerful, and smaller than the corresponding
GUI-based toy examples demonstrating similar capabili-
ties. With increasing use of the outwit suite we expect to
add more tools and enhance the capabilities of the exist-

Tool name L.O.C.
readlink 141
odbc 151
docprop 408
winreg 545
winclip 195
Total 1440

Table 1: Tool code size metrics

ing ones. However, given that the power of our approach
relies on the synergies of tool composition and not on the
features of a single tool, we expect both the number of
tools and the size of each tool to remain fairly small.

The greatest hurdle in the development of each tool was
the Win32 API. Many API functions are incompletely or
inconsistently documented [Spi98] while the sheer size
of the API is formidable: it currently comprises 149 dif-
ferent data types, 2193 basic functions, and 1499 error
codes. We were also troubled by subtle incompatibili-
ties between operating system versions that could cre-
ate portability problems, the lack of documentation on
the possible function error return values, and the overly
complicated interface provided by some functions. We
were however pleasantly surprised by the quality of the
ODBC interface which stands apart in documentation
quality from the rest of the Windows API.

Many API functions are based on special handles which
must be carefully allocated and deallocated. We be-
lieve that this must be a source of reliability problems in
the large GUI-based applications. In contrast, the outwit
tools will simply process data and exit, thereby sidestep-
ping various resource leak problems.

In order to maximize the applicability of the outwit tools,
all of them are written as native Win32 applications and
do not rely on an intermediate Unix porting layer. They
can thus be used together with any collection of Unix
tools that allows the execution of Win32 programs. All
tools can be used under Windows 95, 98, 2000, and NT.

5 Exemplar Uses

We believe that the mode of work enabled and demon-
strated by the outwit tool suite is more important than the
tools themselves. In the following paragraphs we there-
fore present some — motivating we hope — examples
of how Unix tool-based programming can be applied to
the Windows GUI world.

5.1 Winreg

Tool-based access to the Windows registry can allow,
in combination with other Unix tools, sophisticated reg-
istry manipulations that are impossible within the GUI-
based registry editor. A commonly used idiom involves
processing Windows registry data as the output of win-
reg using Unix tools like sed and awk and redirecting
their output back to the registry via winreg. The follow-
ing example will change all user registry references from
c:/home to d:/home:

winreg HKEY_CURRENT_USER |
sed -n ’s/C:\\home/D:\\home/gp’ |
winreg

Winreg is also often used to extract system information
from the registry. The name of the currently logged-in
user can be stored in a shell variable using the following
construct:

LOGIN=‘winreg \
HKEY_LOCAL_MACHINE\Network\Logon |

awk ’/username/{print $3}’ ‘

In addition, network settings can be obtained from
the registry keys HKEY LOCAL MACHINE\System\-

CurrentControlSet\Services\VxD\MSTCP and
HKEY LOCAL MACHINE\System\CurrentControlSet\-

Services\VxD\DHCP.

One other application of winreg involves accessing sys-
tem performance information similar in nature to the
data provided by the Unix vmstat command. The follow-
ing command sequence will save system performance
information (CPU load, data I/O, cache and memory sys-
tem data in the form of raw counter values) to a file for
later statistical processing. This functionality is not pro-
vided by the system-supplied performance monitors and
would otherwise require the implementation of a sepa-
rate program:

while :
do

winreg -dt HKEY_DYN_DATA\PerfStats\StatData
sleep 5

done >/var/log/perfdata

5.2 Winclip

Winclip can often be used as a quick way to provide
functionality lacking from GUI applications. The com-
mand winclip -c </home/signature, when tied to a

keyboard shortcut, can be used to quickly obtain a copy
of the user’s signature file contents within any applica-
tion. Similarly, the following sequence can be used to
trivially encrypt or decrypt the text contained in the clip-
board using the rot13 substitution cypher:

winclip -p |
tr ’[a-z][A-Z]’ ’[n-z][a-m][N-Z][A-M]’ |
winclip -c

(This “encryption” method is sometimes used in certain
newsgroups to discourage casual reading of joke punch
lines or offensive jokes.)

By using the point and click metaphor, GUI interfaces to
the filesystem such as the Windows Explorer often pro-
vide a swifter method for selecting files than typing file
names at the command prompt. Winclip allows the inte-
gration of the two interaction approaches. The following
sequence will open up a console window with its cur-
rent directory set to the directory copied to the clipboard
from the Windows Explorer:

\bin\echo -n "start command /k cd " >$$.bat
winclip -p >>$$.bat
start $$.bat

The Windows Explorer is also our method of choice
for visually selecting groups of files. Having selected a
group of files they can then be copied to the clipboard (as
drop targets) and processed using text-based commands:

sed ’/ˆ$/d’ ‘winclip -p‘ | wc -l

Winclip, in conjunction with a pipeline-based image ma-
nipulation package such as netpbm [P 93], can also be
used to automate the processing of graphics images that
have been copied to the clipboard. When processing a
large number of images this method of work can save the
user from the tiresome repetitive operations that would
have to be performed on a GUI-based graphics manipu-
lation package. Alternatively, winclip can be used to add
new facilities to a GUI package by processing the image
in the clipboard. As an example, the following sequence
of commands will crop, scale, quantize, and convert the
clipboard bitmap into a GIF file:

winclip -p |
pnmcrop |
pnmscale 0.5 |
ppmquant 256 |
ppmtogif >file.gif

5.3 Odbc

SQL and a number of Unix tools offer complementary
approaches for obtaining the same result. SQL can be
used to select records and fields, group records, join ta-
bles, and sort in the same way as the Unix grep, awk,
uniq, join and sort commands. There are however cases
where applying Unix tools to data obtained from SQL

databases can enhance productivity. One example con-
cerns the combination of different databases (hosted on
different servers and applications). Using our odbc tool
the following sequence selects, merges, sorts, and prints
fields from two different databases:

(
odbc ACorpDB "select FullName, Phone from

Employees"
odbc BCorpDB "select surname, name,

phonenum from personnel"
) | sort | pr

Odbc is also useful when integrating Unix and
Windows-based systems. A password file can be ex-
tracted from a relational database and copied to a Unix
file using the following command:

odbc -F: userDB "select * from passwd" \
>/nfs/host/passwd

(The security implications of such functionality are left
as an exercise to the reader.)

Finally, given the existence of text-based graph creation
tools like GNUplot combining odbc, Unix text manip-
ulation tools, and GNUplot can be an efficient way to
automate the generation of graphs from databases.

5.4 Readlink and docprop

Readlink and docprop are often used together to process
GUI file data. Readlink is typically used to resolve shell-
namespace symbolic links in a sequence similar to the
following:

case $FNAME in
*.lnk) FNAME=‘readlink $1‘ ;;

esac

Docprop can be used to create and consolidate indices of
document titles and authors. Docprop can also be used

PROGRAMME

Form INF3

WORKPACKAGE DESCRIPTION

 For WORKPACKAGE N 0

WP title: Project Management
WP leader: P0
WP contributors: All
Start month: 1 End month: 24
Estimated labour effort in person-months: 12

Activities related to this workpackage will address the following items:
[...]

Constituent task(s): Task leader:
T0.1 Definition of technical & operational internal procedures and Quality

aspects of the Project
P0

T0.2 Contractual Reporting P0
T0.3 Organisation of Kick-off, Interim, Concertation, and Final meetings Hosting partner

Deliverables (max 3 per WP) Month Due:
D0.1 Project Quality Plan 1
D0.# Progress reports and cost statements 6,12,18,24
D0.6 Final report 24

Figure 1: Workpackage description form.

to gather statistical data from document files. The fol-
lowing sequence will print a list of application names
that were used to edit the most recently used files, sorted
in order of application popularity.

for f in /windows/recent/*.lnk
do

readlink $f
done |
xargs docprop -f ’{Application}\n’ |
sort |
uniq -c |
sort -n

5.5 Document Processing

The integration of the GUI and Unix tool worlds can be
a particularly productive option when processing textual
data using (or having to use) a GUI-based word pro-
cessor. In the following paragraphs we will present an
exemplar case concerning processing textual data for a
funding proposal. The work to be funded was divided
into eight workpackages; each workpackage had to be
described using a form similar to the one appearing in
Figure 1.

In addition to a description for each workpackage, the
funding body required the provision of a list of deliv-
erables ordered by delivery month, and a GANTT chart
for the whole project. We also wanted a current list of
tasks in order to distribute work between the project par-
ticipants. All these items are different representations of
the data included in the workpackage descriptions. The
combined use of winclip and some Unix tools allowed us

PROGRAMME

Form INF4

DELIVERABLE DESCRIPTION

Due end of
month n

WP
n

Deliverable
Title

Deliverable
Type and Status

0 D0.1 Project Quality Plan
Report, Restricted

,12,18,24 0 D0.# Progress reports and cost statements
Report, Confidential

4 0 D0.6 Final report
Report, Restricted

1 D1.1 Requirement Specification
Report, Confidential

1 D1.2 Architecture Design
Report, Confidential

2 D2.1 Draft Specification of interlingua
Report, Confidential

2 D2.2 Greek and English compatible revised
interlingua Report, Confidential

2 2 D2.3 Interlingua for implementation
Report, Confidential

3 D3.1 Metalevel Specification
Report, Confidential

2 3 D3.2 Interlingua for implementation
Report, Confidential

4 D4.1 Report on selection of resources and their use
in the system Report, Restricted

4 4 D4.2 Prototype Resources
Data, Confidential

Figure 2: Project deliverable list based on awk data.

to automate the creation of these items. All sequences
we used involved the massaging of the clipboard data
(which contained the workpackage descriptions) using
awk into a format appropriate to be pasted back into an-
other table or application.

The following script was used to create a list of tasks:

winclip -p |
awk "-F\t" ’/ˆT[0-9]/{print $1 " " $2}’ |
winclip -c

The script below was used to create a list of deliverables
to be pasted back into a summary form in the original
application:

winclip -p |
awk "-F\t" ’/ˆD[0-9]/ {

print $3 "\t" substr($1, 2, 1) \
"\t" $1 "\t" $2

}’ |
winclip -c

The corresponding table is depicted in Figure 2.

Finally, the following script was used to create a work-
package list together with start dates and durations in a
format suitable for pasting into Microsoft Project:

winclip -p | awk ’
BEGIN {FS = "\t" }
/For WORK/ {split($0, a, "\t")}

/ˆWP title/ {WP = $2}
/ˆStart month/ {

print "WP" a[4] "\t" \
WP "\t" \
($4 - $2 + 1) * 31 "ed\t" \
"1/" ($2 - 1) % 12 + 1 "/" 2000 +

int(($2 - 1)/12)
}’ |
winclip -c

The output was of the following form:

WP0 Project Management 744ed 1/1/2000
WP1 Requirements Analysis 124ed 1/1/2000
WP3 Metalevel Specification 279ed 1/4/2000
...

The resulting GANTT chart is depicted in Figure 3.

6 Related Work

A number of efforts have been undertaken to provide the
functionality of the Unix tools in the Windows environ-
ment. It is interesting that only one of them is based on
the POSIX subsystem provided under Windows NT as an
alternative to Win32. The main drawback of the POSIX

subsystem is that processes running in it are essentially
isolated from the rest of the system. Most porting efforts
complement our outwit suite by providing the necessary
tools needed to utilize our offerings. In some cases facil-
ities for cooperating with GUI applications are also pro-
vided.

Our wux port of Unix tools to the 16 bit Windows en-
vironment [Spi94] demonstrated the possibility of im-
plementing true multitasked processing of pipeline com-
mand sequences under the Windows environment, but
did not offer any additional integration facilities.

The UWIN port [Kor97] of the Unix tools and libraries
supports all X/Open Release 4 headers, interfaces, and
commands. It supports the shell namespace links (short-
cuts) by mapping them internally to Unix symbolic
links. It is interesting to note that UWIN resolves links by
reverse engineering the OLE link file format rather than
calling the corresponding Win32 API functions. UWIN

provides access to the clipboard via the /dev/clipboard
device and to the Windows registry via a virtual file sys-
tem that is mounted at /reg. Both facilities are however
only available to programs that have been compiled un-
der the UWIN environment. As a result, native operating
system console commands (e.g. dir) and commands that
have been compiled without using the UWIN libraries
can not directly access the clipboard and the registry. On
the contrary, outwit tools provide clipboard and registry

access to all character-based console programs, includ-
ing 16-bit legacy applications.

Cygwin [Noe98] is a full Win32 porting layer for Unix
applications. It supports the GNU development tools and
allows the effortless port of many Unix programs by
supporting almost all POSIX.1/90 calls and other Unix
version-specific functionality. A novel integration aspect
of cygwin is the provision of the /dev/windows pseudo-
device which can be used as a source for Windows mes-
sages (user input from the keyboard, the mouse, and IPC

events).

Finally, OpenNt [Wal97] is a complete porting and run-
time environment that can be used to migrate application
source, developed on traditional Unix systems, directly
to Windows NT. Ported software includes many X11R5
clients and over 200 other utilities. It is implemented us-
ing an enhanced Windows NT POSIX subsystem. As the
POSIX subsystem is isolated from the Win32 subsystem,
integration between the two worlds is offered through
the filesystem, the desktop, a special function to execute
Win32 applications, and socket-based IPC.

A number of technologies support high-level program-
ming in the Windows environment. These include lan-
guages such as Visual Basic [Boc99], Perl [WCSP96],
and TCL/TK [Ous94], and integration mechanisms such
as OLE automation and Windows scripting. These ap-
proaches, based on a programming language, are supe-
rior for programming in the large and developing appli-
cations in a top down manner. Tool-based approaches
such as the one we advocate complement such an envi-
ronment offering a different development path. As tools
are directly used from the shell command line in a ca-
sual user interaction pattern repetitive tasks are gradu-
ally automated as shell scripts and subsequently, as they
mature, packaged as applications. We believe that this
bottom-up evolutionary style of development should be
available together with other approaches.

7 Conclusions and Further Work

The tools we described can be extended in breadth and
depth. We are currently planning to enhance winclip
with additional data types to be able to handle sound
data as input and output, as well as bitmap data as in-
put. Odbc can also be improved by adding the ability to
modify database data using the SQL update command.
Such a facility will be useful for transferring data be-
tween databases through a pipeline with two odbc com-
mands at its ends. In addition, with the advent of Win-
dows 2000 which supports the IFilter interface, docprop

Task Name

WP0 Project Management

WP1 Requirements Analysis and System Architecture Design

WP2 Specification of the Interlingual Representation

WP3 Metalevel Specification and Maintenance of the Interlingua

WP4 Linguistic Resources

WP5 Authoring Tools

WP6 Generators

WP7 Evaluation

WP8 Dissemination and Exploitation-Planning

M1 Baseline Specification

M2 Software Demonstrator

M1 Baseline Specification

M2 Software Demonstrator

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26
Year 1 Year 2

Figure 3: Project GANTT chart based on awk data.

can be extended to retrieve a textual representation of
any object that supports the respective interface. Finally,
the migration of many operating system databases to the
Windows 2000 Active Directory has created the need for
a new text-based tool to manipulate them.

Many Windows applications expose an object model of
the data and operations they support. Environments such
as Visual Basic and language extensions such as the Perl
OLE module allow programmers to access and manipu-
late Windows applications and their data from external
programs. Although we feel that shell-based program-
ming can not compete against environments tailored to
support this mode of programming, a simple text-based
command to access OLE automation objects could prove
a valuable addition to our outwit suite. On the same
front, but from a different angle, we are examining how
Unix tools can be repackaged as OLE components to be
used within visual programming environments [Spi99].

One final dimension of work that will increase the ap-
plicability of outwit concerns internationalization. All
Win32 API functions dealing with strings are provided in
8-bit character and Unicode (wide character) versions.
Although low-end Windows systems such as Windows
95/98 are not supporting Unicode for most of the API

functions, Windows NT and Windows 2000 provide full
Unicode support. As a result, the clipboard, filenames,
registry keys, and databases may contain the full reper-
toire of Unicode characters. Currently outwit is coded
and compiled as an 8-bit character application. Follow-
ing the lead established by the Plan 9 internationaliza-
tion efforts [PT93] a reasonable approach would be to
adapt all outwit tools to use a multibyte (e.g. UTF-8)

representation for their textual input and output. This
approach would work with many existing Unix tools; we
expect programs that explicitly deal with characters and
will need to be modified (e.g. grep, sort, sed, and tr) to
follow a similar approach.

In the previous paragraphs we demonstrated that the
rise of GUI-based environments does not mean that tool
building and Unix shell programming are less relevant
today than they were 25 years ago. The lack of support
for tool-based programming in the Windows environ-
ment is a result of market dynamics rather than an inher-
ent limitation of the environment. Integrated GUI-based
systems are probably the only applications that can be
marketed and sold at a profit. However, modest effort
invested in tool building will produce tools that can be
used as building blocks in concert with the large number
of existing Unix tools and the powerful shells.

Availability

The tools described are available online at:

http://softlab.icsd.aegean.gr/˜dspin/sw/outwit

References

[Boc99] David Boctor. Microsoft Office 2000 Visual
Basic Fundamentals. Microsoft Press, Red-
mond, WA, USA, 1999.

[ISO95] International Organization for Standardiza-
tion, Geneva, Switzerland. Information
technology — Database languages — SQL
— Part 3: Call-Level Interface (SQL/CLI),
1995. ISO/IEC 9075-3:1995.

[Kor94] David G. Korn. Ksh - an extensible high
level language. In Very High Level Lan-
guages Symposium (VHLL), pages 129–
146, Santa Fe, NM, USA, October 1994.
Usenix Association.

[Kor97] David G. Korn. Porting Unix to Win-
dows NT. In Proceedings of the USENIX
1997 Annual Technical Conference, Ana-
heim, CA, USA, January 1997. Usenix As-
sociation.

[KP84] Brian W. Kernighan and Rob Pike. The
UNIX Programming Environment. Prentice-
Hall, 1984.

[Mic97] Microsoft Corporation. Microsoft ODBC
3.0 Programmer’s Reference and SDK
Guide. Microsoft Press, Redmond, WA,
USA, 1997.

[Noe98] Geoffrey J. Noer. Cygwin32: A free Win32
porting layer for UNIX applications. In
Proceedings of the 2nd USENIX Windows
NT Symposium, Seattle, WA, USA, August
1998. Usenix Association.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit.
Addison-Wesley, 1994.

[P 93] Jef Poskanzer et al. NETPBM: Extended
portable bitmap toolkit. Available on-
line ftp://ftp.x.org/contrib/utilities/, Decem-
ber 1993. Release 7.

[PT93] Rob Pike and Ken Thompson. Hello world.
In USENIX Technical Conference Proceed-
ings, pages 43–50, San Diego, CA, USA,
Winter 1993. Usenix Association.

[Spi94] Diomidis Spinellis. Wux: Unix tools under
Windows. In USENIX Conference Proceed-
ings, pages 325–336, San Francisco, CA,
USA, Winter 1994. Usenix Association.

[Spi98] Diomidis Spinellis. A critique of the Win-
dows application programming interface.
Computer Standards & Interfaces, 20:1–8,
November 1998.

[Spi99] Diomidis Spinellis. Explore, excogitate, ex-
ploit: Component mining. IEEE Computer,
32(9):114–116, September 1999.

[Wal97] Stephen R. Walli. OPENNT: UNIX appli-
cation portability to Windows NT via an al-
ternative environment subsystem. In Pro-
ceedings of the USENIX Windows NT Sym-
posium, Seattle, WA, USA, August 1997.
Usenix Association.

[WCSP96] Larry Wall, Tom Christiansen, Randal L.
Schwartz, and Stephen Potter. Program-
ming Perl. O’Reilly and Associates, Se-
bastopol, CA, USA, second edition, 1996.

