
Java as Distributed Object Glue1

Konstantinos Raptis, Diomidis Spinellis, Sokratis Katsikas
Department of Information and Communication Systems

University of the Aegean
GR-83200, Karlovassi
Samos Island, Greece

{krap, dspin, ska}@aegean.gr
Fax No: +30 - 273 - 82009

1 In World Computer Congress 2000, Beijing, China, August 2000. International Federation for Information Processing.
This is a machine-readable rendering of a working paper draft that led to a publication. The publication should always be cited in preference to this
draft using the reference in the previous footnote. This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to
the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the
copyright holder.

Abstract: An important aspect of research on
software objects, components, and component-based
applications concerns their interoperation. When there
is a need for two or more software components, based
on different technologies, to interoperate the mission
target is to make the components hide the fact that the
other components are functioning under a different
technology without changing their characteristics and
behavior. In this paper we describe basic strategies for
bridging the gap between the three basic middleware
remoting technologies (CORBA, DCOM, and RMI)
and present our approach for a Java-based Object
Mediator architecture.

Keywords: software objects, components,
middleware, bridge, mediator.

Introduction

The need for interaction between software
components from different vendors, running on
different machines, and on different operating systems
led to the specification of middleware remoting
models. The Object Management Group’s Component
Object Request Broker Architecture (CORBA)1,
Microsoft’s Distributed Component Object Model
(DCOM)2, and Sun Microsystems’ Remote Method
Invocation (RMI)3 are three models that enable
software components with different descent to work
together.

For software components to be able to interact with
each other they must comply with the rules of their
underlying middleware technology4. However, it is
difficult, if not impossible, for two components,
hosted on different component architectures, to
interact with each other. The incompatibility problems
stem from the differences of the underlying models
and the way they present and use the software
components.

When there is a need for two or more software
components, based on different technologies, to
interoperate the mission target is to make the
components hide the fact that the other components
are functioning under a different technology without
changing their characteristics and behavior.

Our research work concerns the exploitation of the
Java language as a tool for the creation of a mediation
mechanism for bridging together the three most
widespread commercial middleware remoting
technologies; CORBA, DCOM, and RMI. We are
using the Java language as a “general purpose object
glue”. Our target is to allow a server object, which
may be CORBA or DCOM or RMI compliant, to
expose its methods to CORBA-, DCOM-, and RMI-
based clients.

As a component’s instance is typically an object and
anything applying to objects has also apply on
components, in the next paragraphs our discussion
will focus on software objects. Before the presentation

of our research findings we present the main attempts
for bridging CORBA, DCOM and RMI technologies.

Bridging Distributed Objects

Nowadays, discourse about software objects,
components, and component-based applications is
about ActiveX controls, JavaBeans (JBs), Microsoft
Transaction Server (MTS), and Enterprise JavaBeans
(EJBs) and how they can interoperate each other. All
the above are not independent models; they all depend
on the underlying architecture that each has as a basis
for its construction.

In the next paragraphs of this section we provide some
of the attempts that have been done for bridging
CORBA, DCOM, and RMI, the most widespread
commercial middleware remoting technologies.

CORBA-DCOM Bridge
CORBA and DCOM, as extension of COM, are the
two most important middleware remoting
technologies. Their importance stems from their
ancestry. CORBA is child of the Object Management
Group an association including Sun Microsystems,
Compaq, Hewlett-Packard, IONA, Microsoft and
others, while DCOM comes from Microsoft which
has the highest share in the desktop operating system
market. Although COM and its extension DCOM are
built-in in Microsoft’s OSs, the widespread adoption
of Microsoft’s OSs and the development of
programming languages which support rich
COM/DCOM frameworks, led to the production of
many components based on Microsoft’s architecture.
On the other hand, the fact that the OMG provides
CORBA as specifications for ORBs instead of a
product led many companies to create their own
CORBA compliant request brokers providing the
developers and the users with a range of ORBs
capable to satisfy various demands.

The OMG understanding the need for bridging their
differences decided to include as part of its updated
revision 2.0 of CORBA architecture and specification
the Interworking Architecture which is the
specification for bridging OLE/COM and CORBA.
The Interworking Architecture addresses three points:

• Interface Mapping. As both models use IDLs to
define the interfaces and as any object is exposed
by its interface, there must be a mapping between

them in order for a CORBA object to viewed as a
COM object and vice versa.

• Interface Composition Mapping. While CORBA
supports multiple interface inheritance, COM
provides single inheritance. In order for the
bridge to be successful there must be a map from
CORBA’s multiple inheritance to COM’s single
inheritance and vice versa.

• Identity Mapping. This specification is concerned
with the mapping between the different Interface
IDs that are used by CORBA and COM.

The OMG does not provide an implementation of a
COM/CORBA bridge but only specifications. The
implementation belongs to commercial companies
which have released many bridge tools, compliant
with OMG’s specification. Some of these products are
PeerLogic’s COM2CORBA, IONA’s OrbixCOMet
Desktop, and Visual Edge’s ObjectBridge.

RMI-CORBA Bridge
The widespread deployment of Java language and its
use in the development of Web-based applications in
combination with the presence of CORBA as a mature
middleware technology quickly led to the
combination of these two. Although Sun provided its
own model for remote java-object interactions, the
Java Remote Method Protocol (RMI), the effective
combination of Java language with the CORBA
architecture led OMG and Sun to think for the
marriage of RMI with CORBA. According to Sun5 the
Java developers would be able to use RMI-based Java
objects and interoperate with CORBA-based remote
objects. In June of 1999, Sun and IBM announced the
release of the RMI architecture over IIOP protocol.
According to RMI-IIOP any RMI-based object can be
accessed by a CORBA one and vice versa. In order
for this goal to be achieved, OMG has adopted two
standards for Object By Value and the Java-to-IDL
mapping. Moreover Sun made some changes in RMI
to work under the new requirements.

Apart from the adoption of IIOP as RMI’s alternative
protocol, a new version of the rmic compiler has been
developed in order to generate IIOP stubs/ties and
IDL interfaces. Furthermore, the use of new
commands and tools, for example for naming and
storing in registry the RMI-objects and for ORB
activation, is required in order for the RMI-IIOP-
based objects to be accessed by CORBA-based.

DCOM-RMI Bridge
In this field the attention is focused on the attempts
for integrating Java language and COM and on the
bridging of JavaBeans with ActiveX.

Until recently, Microsoft supported COM/DCOM
with its own edition of Java language, Visual J++. In
order for users of the native Java language to use the
COM technology, Microsoft supports the Microsoft
Visual Machine (MSVM). According to Microsoft6,
the MSVM provides all the mechanisms that are
required for a Java object to be viewed like a COM
object and for a COM object to be accessible like a
Java object.

As for JavaBeans – ActiveX bridging, a number of
companies, including Microsoft and Sun, provide
bridges for JavaBeans and ActiveX components to
interoperate with each other taking advantage of the
JavaBeans architecture flexibility in connection with
protocol usage. Moreover, a lot of the work concerns
the possibility of a JavaBean component to be used in
ActiveX-component based environments like
Microsoft Office or Visual Basic applications.

Java as Tool for Object Bridging

In the previous section we presented the basic
attempts for bridging the CORBA, DCOM, and RMI
middleware remoting technologies. All three of them
have a common point; they support the Java language
for building distributed objects. This common point
led us to examine how we could exploit the Java
language in order to bridge distributed objects that
were compliant with these three technologies.

From the view of the software developer any software
object is constructed following the rules of its native
language and the rules of the technology that it
conforms to. The basic points that make the objects
comply with one of the three technologies are the
object interfaces, the object naming, the object
storage, and the object reference. These characteristics
are not collide i.e. an object may has two interfaces
which expose the same methods but in different
technologies or it can be stored with two different
ways.

Suppose we have two objects based on different
technologies, a server object which exposes some
methods and a client object which needs the exposed
methods. For these objects to communicate a

mediation mechanism is needed to transform one
technology to the other and promote the client's
request to the server and vice versa. For the
interaction to succeed the mediator must have a
double role. From the client's point of view the
mediator must operate as if it was a client's
technology server object and from the server's point of
view it must operate as if it was a server's technology
client object. Moreover, the mediator must be
constructed in a common form understandable from
the different technologies.

The programming language that could be used for the
construction of the mediator must be supported from
all underlying technologies. The fact that the Java
programming language is supported by all the three
technologies led us to use the Java as the
programming tool for the mediator's construction.
Besides, using the Java language we have the
advantage that our mediator can function over any
operating system. Moreover, the acceptance of Java as
a suitable language for network applications ensures
its support from various middleware remoting
technologies.

The mediator's architecture must support its double
role as the client's technology server object and as the
server's technology client object. For this goal to be
achieved the mediator must include all the necessary
attributes of bridged technologies. Our work on this
goal targets the construction of a virtual server which
operates under the rules of the client's technology.
Therefore, the mediator must implement a client's
technology interface through which it exposes the real
server's methods to the client. Moreover, the mediator
must be exposed and stored through client's
technology appropriate rules.

Up to this point, our architecture follows the structure
of a distributed client/server application. The
difference stems from the fact that our mediator does
not really implement the exposed methods. In reality,
our mediator forwards the client's request to the real
server object. For our mediator to be able to forward
the request to the server object it must act as a server's
technology native client which requests the server's
methods. That is, our mediator must support all the
appropriate server's technology attributes for a client
object. It must be able to understand the methods
exposed by the server's technology interface, to
declare the server object using its technology naming
and storage methods and to request the methods using
the technological appropriate object reference. All

these attributes are included in the mediator through
which it has the ability to forward the request like a
native client.

Using the Java programming language all the above
client and server attributes are declared in our
mediator by using common language expressions.
Moreover, the fact that there are mappings between
the Java language and the different interface definition
languages help us to declare the method's attributes in
a common form.

From a general point of view our mediator's operation
must fulfil four basic demands:

• The mediator must comply with the client's and
server's side architectures. Our mediator does
comply with this demand by including all the
necessary attributes in order to act like a client's
technology virtual server and like a server's
technology virtual client.

• The mediator must hide the technological
differences on interfaces. Our mediator uses his
virtual client attributes to recognize and
understand the interface through which the server
object exposes its methods. Moreover the
construction of a new interface, following the
principles of client's technology, and the
implementation of this interface by the mediator
provides the client with the illusion that it
interacts with a server object of the same
technology.

• The mediator must hide the fact that the client
looks for the server using different object
reference and storage methods than the server
does. In the same way the fact that the mediator
supports all the appropriate attributes of the
bridged technologies and its double role as a
virtual server and virtual client let us to use
simultaneously different methods for naming and
storing the mediator as if it was a client's
technology server and to recognize and call the
real server as if it was a server's technology client.

• The mediator must communicate with the client
and server objects using their technology
communication protocols. In our client-mediator-
server interaction the client and the mediator are
interacting using the client's technology protocol
and the mediator interacts with the server using
the server's technology protocol.

Object BObject A

 + methodX()

Mediator
 - Attributes ObjA - Attributes ObjB

 + methodX()
 - methodY()

 - Attributes TechA

 - Attributes TechB

Interface TechA

Requests

Reponses

Requests

Reponses

Figure 1: Class diagram of ObjectA-ObjectB interaction.

Interface TechB

There is a fifth basic demand concerning the
environment where the mediator is hosted. It is
obvious that the mediator's environment must support
all the bridged technologies in order for the mediator
to function properly at run time. In figure 1 we present
a class diagram of an interaction between two
different technology objects.

As we present in the previous section, up to now we
can bridge:
• CORBA-DCOM: using implementations of

OMG's Interworking Architecture.
• RMI-CORBA: using the IIOP as RMI's

alternative protocol.
• DCOM-RMI: there is not any bridging tool. We

can bridge only JavaBeans and ActiveX
components.

Following our architecture we have succeed to bridge
an RMI-client application with a CORBA-server
application and a CORBA-client with an RMI-server
without using the IIOP as RMI's protocol, a CORBA-
client with a COM-server and, an RMI-client with a
COM-server. Moreover, we can extend our mediator
in order for an RMI-client to requests some services
from a COM-server simultaneously with a CORBA-
client. Using the Java programming language and this
architecture we have the ability to construct a
mediator mechanism in order to bridge any, of those
three middleware remoting technologies compliant,
objects. Any limitations stem from unsolved
incompatibilities on mappings between OMG's and
Microsoft's IDLs and the Java programming language.

Conclusions

Although many attempts have been undertaken to
bridge the gap between the objects’ underlying
architectures, they are not enough at the time to
provide true vendor-, language-, and technology-
independent interoperation between different software
objects. Unfortunately, until now the use of a single
middleware product is the most reliable solution.

Compatibility problems between different vendors’
products persist even if the products are compliant
with the same technology7. Even for the available
bridge tools their “fully compliant” statements many
times refer to a single vendor’s products selection
which does not support the vendor’s independence
theory.

Our research concerns the development of an
architecture suitable to provide an independent
context for building mediators able to integrate multi-
technology distributed objects. We are using the Java
language as the programming tool for the creation of a
mediator mechanism, as a “general purpose object
glue”. The results of our work have proven that the
integration of different middleware remoting
technologies is possible.

Up to now our architecture allows the interoperation
between an RMI-client and a CORBA-server, a
CORBA-client and an RMI-server, a CORBA-client
and a COM-server, and an RMI-client and a COM-
server. Our interoperation between RMI and CORBA
does not depend on the support of the IIOP protocol in
the RMI architecture. In the future we plan to
complete the circle of the interoperations between the
RMI, the CORBA and the COM technologies.
Moreover, we plan to create a tool through which a
developer will automatically create the needed
mediator mechanism. The integration and the
application of the Java Object Mediator can provide
truly vendor-, language-, and technology-independent
interoperation between different software objects.

References

1. Object Management Group, Inc., “The
Common Object Request Broker: Architecture
and Specification”, Revision 2.3, Object
Management Group, Inc., June 1999.

2. Microsoft Corporation, “DCOM Architecture,
White Paper”, Microsoft Corporation,
Redmond WA USA, 1998.

3. Sun Microsystems, Inc., “Java Remote Method
Invocation Specification”, Revision 1.50, Sun
Microsystems, Inc., Mountain View, California
USA, October 1998.

4. Guijun Wang, Liz Ungar, Dan Klawitter,
“Component Assembly for OO Distributed

Systems”, IEEE Computer, Vol. 32, No 7, pp.
71-78, July 1999.

5. Sun Microsystems, Inc., “Java-Based
Distributed Computing, RMI and IIOP in
Java”, Sun Microsystems, Inc., Mountain
View, California USA, June 26, 1997.
Available online:
http://www.javasoft.com/pr/1997/june/statemen
t970626-01.html, January 2000.

6. Microsoft Corporation, “Integrating Java and
COM, A Technology Overview”, Microsoft
Corporation, Redmond WA USA, January
1999.

7. John Charles, “Middleware Moves to the
Forefront”, IEEE Computer, Vol. 32, No 5, pp.
17-19, May 1999.

