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Abstract—J% (J-mod), is a Java language extension that
supports integration with Domain-Specific Languages. The inte-
gration is realized through an architecture that permits external
modules to support DSLs. The DSL statements can be syntacti-
cally checked at compile-time. An additional facility allows the
static type checking of Java variables that appear within DSL
code. To support this process each DSL module comes as a library
that is used both at compile time and during program execution.

I. INTRODUCTION

The multiparadigm programming [1], [2] approach de-
manded each problem to be dealt with the most suitable
programming language. The use of DSLs in the software de-
velopment process reduces cost and enhances productivity [3],
[4]. In modern multiparadigm software development, Domain-
specific languages (DSL) are often integrated into General-
Purpose Languages (GPL), and according to the categorization
of Mernik et al. [3] follow distinct patterns. Mernik also
provides guidelines regarding the implementation process of
a DSL, and the use of each pattern, according to its notation,
design and user community.

DSLs focus on a specific problem domain. For that purpose
they sacrifice syntactic flexibility. In the literature, they are
often called micro-languages or little languages [5]. Well
known DSLs include regular expressions, SQL, HTML and
VHDL. On the other hand, GPLs have a wider scope, providing
a set of processing capabilities applicable to various problem
domains [5]. Typical examples of GPLs are Java, C, C++, and
Python.

Currently the integration of a DSL with a GPL brings
forth many practical and research issues. For example, SQL
integration in the Java programming language is implemented
by the JDBC API application library [6]. This implementation
pattern compels the programmer to pass the SQL query as a
String. The Java compiler is completely unaware of the SQL
query and the programmer finds out SQL syntactical errors at
runtime, usually by an exception raised by the JDBC driver.
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Such errors remain undetected, if during the testing phase of
the product the SQL query is never invoked.

This paper introduces J%, a DSL-aware extension of the Java
programming language. Its purpose is to enrich the current
Java syntax in order to effectively support DSLs. The prototype
implementation consists of a pre-processor, that translates the
J% source code to Java compatible code. Thus, it provides an
extensible way to embed DSLs into Java.

J% introduces the following new characteristics:
• Static Typing The compilation process of the DSL is

type-safe. The compiler is able to perform static typing
to the hosted DSLs.

• DSL Syntax Compile-Time Check The DSL is syn-
tactically checked at compile time and all errors are
reported as compile-time errors. Each hosted DSL retains
its syntax. There is only a minimal addition to the
grammar of each language to support type mapping with
J% (Section II).

• Meta-Programming Facility The hosted DSL is not
translated into Java, but generates code that facilitates ex-
isting Java DSL Application Programming Interface APIs,
like JDBC for SQL. This is the main difference between
J% and other popular meta-programming systems that
transform the DSL into the host language.

• Common DSL Container J% provides one common way
to embed DSLs into Java. This way, the language grammar
is not burdened with custom extensions, each time a new
DSL module is included.

• Extensible Developers can create their own DSLs module
through a well defined application programming interface
(API). This way J% can include as many DSLs as possible.

II. THE J% LANGUAGE

J% language adopts the typical Java syntax (v.1.5) with
a minimal set of extensions. Each DSL is also extended to
support the integration with Java. Our approach follows the
Implementation: Extensible compiler/interpreter pattern [3].

A. Extending Java

Figure 1 listing contains a simplified version of J% gram-
mar. The following BNF conventions are adopted:
• [x] denotes zero or one occurrences of x.
• {x} denotes zero or more occurrences of x.
• x | y means one of either x or y.



code_unit ::= [ package ]
{ import }
{ type }

type ::= class
| interface
| enumeration

class ::= typical_class
| dsl_class

dsl_class ::= { modifier } ’class’ identifier
’extends’ identifier
’<’ identifier ’>’
’{’ { any_character } ’}’

Fig. 1. Simplified J% grammar

The main rule is code_unit which contains declarations
of package (package), import statements (import) and
types (type). Each type can be either a class, an enumeration
or an interface.

The declarations are compatible with those of Java [7]. The
difference lies in the class rule. Each class can be a class
(typical_class) or a DSL class (dsl_class). Its block
contains the actual DSL code. The any_character rule
must accept any character as input, because at grammar level
we cannot predict the syntax of the embedded DSL language.
The actual DSL code is contained in a set brackets, like a
typical class or method.

B. DSL Extensions

DSL maintains its own syntax. By doing that, the develop-
ment phase receives the maximum benefit, since the domain
knowledge can be used and expressed through the specific
instance of the DSL.

For simple cases, where the DSL does not interact with Java
the syntax is completely the same. When the host language
needs to interact with the DSL, an external reference must be
defined; a contract that bridges the type systems between the
two languages is required.

The grammar of this DSL extension is presented in Figure
2. The interpretation of the base types (B, C, etc.) is provided
in the Java Virtual Machine Specification [8].

For example, in an SQL query that needs an int as a
parameter we would write:

select * from customer
where customerId = #[1]<I>

The expression #[1]<I> defines that the customerId
expects an int base type (I). The [1] is the parameter index
and affects the code generation phase (Section III-A4).

III. THE J% COMPILER

The compilation process is depicted in Figure 3. The J%
compiler accepts the input source files (.jmod). The symbol
table is populated and the required DSL modules are identified.
In this phase the compiler also verifies each module existence
in the classpath and seeks its implementation. The DSL

<external_ref> ::= ’#’’[’<index>’]’’<’<field_type>’>’
<field_type> ::= <base_type> |

<object_type> |
<array_type>

<base_type> ::= ’B’|’C’|’D’|’F’|’I’|’J’|’S’|’Z’
<object_type> ::= ’L’<fullclassname>;
<array_type> ::= ’[’<optional_size><field_type>
<optional_size> ::= ’0’-’9’ { ’0’-’9’ }
<index> ::= ’1’-’9’ { ’0’-’9’ }

Fig. 2. Syntax of a DSL external reference

Fig. 3. J% Compilation Process

types are located, parsed and associated with the appropriate
elements in the symbol table.

Afterwards, type checking is initiated for the DSL code.
Type mapping information is gathered for each DSL module
and the references to external variables are tested about type
compatibility and scope.

The code generator is invoked and Java code is generated.
Finally, the Java compiler is invoked and it translates the
generated Java code into executable JVM bytecode.

A. DSL Modules

The DSL modules have a dual use; they implement the
syntax and type checking at compile-time and provide an
execution environment at runtime.

1) Importing: A DSL module is imported using an import
statement. In the following example, we import the Regex
runtime class of the regular expressions DSL module.
import org.jmod.dsl.regex.Regex;



To include third party external modules, the jar files must
be included in the classpath and the entries must be added in
the appropriate configuration file.

2) Initialization: The compile-time part of each module is
identified in the compiler initialisation phase. The exported
DSL types of each module are added in the symbol table
and identified as DSL types. The following listing presents
a symbol table printout, populated only with the basic types
(java.lang) and the DSL types.

$ bin/jmodc -st
[...]
Type:java.lang.IllegalThreadStateException (class)
Type:java.lang.Runnable (interface)
Type:java.lang.ThreadLocal (class)
Type:org.jmod.dsl.regex.Regex (dsl type)

3) Configuration: The DSL modules are reconfigured
each time they are invoked. This is realised through the
ModuleConfiguration class (Figure 4). The J% com-
piler identifies all the classes that are subclasses of the
ModuleConfiguration class and use them to get at
compile-time each DSL’s module configuration. Each subclass
has a set of public fields that define the configuration. These
fields can be only int, String, float, and boolean
types.

In Figure 4, the RegexConfiguration class is a sub-
class of ModuleConfiguration and has two public fields;
optimisation which is set to “true”, and engine which
defines the underlying regular expression engine and is set to
“posix”.

If we declare a class NumberRegex,

import org.jmod.dsl.regex.Regex;
import org.jmod.dsl.regex.RegexConfiguration;

public class NumberRegex
extends Regex<RegexConfiguration> {

[0-9]+
}

the DSL module is invoked with optimisation
set to “true”, and engine set to “posix”. When we
want to turn the optimisation off, we have to
change the RegexConfiguration with its subclass
NonOptimisedRegex, which overrides the public field
optimisation with the value “false”. The class field over-
riding is supported fully by the Java programming language
[7].

4) Code Generation: DSL modules are responsible for the
code generation. Any third party DSL application library can be
used and the only restriction is that the process must produce
Java compatible code.

If the DSL block interacts with the main Java program
through shared variables (external references, then
the generated code uses the following convention. The gen-
erated class must have a constructor that initialises the shared
variable with the correct order, which is defined in their
declaration. For example, consider the SQL query:

select * from customer where
cust_id = #[1]<int> and cust_name

Fig. 4. DSL Module Configuration Hierarchy

= #[2]<Ljava/lang/String;>

The constructor of the class should be
CustomerQuery(int i, String s) to correctly
initialise the two declared types, an integer that must be
ordered first and a String as second.

IV. CASE STUDY: REGULAR EXPRESSIONS

Regular expressions are a standard feature in many program-
ming languages. Java, C#, Perl and Python contain regular
expression engines as part of their API. The regular expression
API in Java follows the Implementation:Embedding pattern and
it is realised through an application library.

The Regular Expression Module in J% exports only the
type Regex. The RegexConfiguration class declares the
basic configuration parameters. The module performs syntax
check in the regular expression, and reports the errors in
compile-time. Its main dependency is the standard regular
expression library java.util.regex, which is distributed
as part of the JDK since v.1.4.

Consider that we have the following code, a regular expres-
sion that matches an IP Address (IPv4).
public class IpAddress

extends Regex<RegexConfiguration> {
([0-9]{1,3}\.){3}[0-9]{1,3}
}

The above code will be transformed into:
public class IpAddress

extends Regex<RegexConfiguration> {
private String regex;

public IpAddress() {
super(new RegexConfiguration());
this.regex =
"([0-9]{1,3}\\.){3}[0-9]{1,3}"; }

public Pattern getPattern() {
return Pattern.compile(regex); }}



The generated code is pretty straightforward and utilises the
standard regular expression library. If the regular epxression
has a syntactic error, the compiler will report it, during the
compilation phase. Regular expressions do not have shared
variables with Java, so this module represents the simplest
form of integration between a DSL and J%.

V. CASE STUDY: SQL

The SQL is the standard language for database query and
manipulation. This case, is more complex than regular expres-
sions, since it supports also shared variables, in addition with
syntax checking. The syntax analysis is based on a custom
SQL grammar, and the generated code utilises standard JDBC
calls. We follow the type mapping scheme proposed by the
JDBC specification [6].

The following listing illustrates an SQL query that perform
a select statement from the database table customers. The
#[1]<I> defines that the query needs one integer parameter.

public class CustomerSelect
extends SQL<SQLConfiguration> {

select * from customers where cust_id = #[1]<I>
}

The first initialisation parameter for this class will be an
int. The generated code will look like:

public class CustomerSelect
extends SQL<SQLConfiguration> {
private int i; private String sql;

public CustomerSelect(int i) {
super(new SQLConfiguration());
this.i = i;
this.sql =

"select * from customers where cust_id = ?";
}

public PreparedStatement
getStatement(Connection c) {

try {
PreparedStatement r =

c.prepareStatement(sql);
r.setInt(1,i)

return r;
} catch (Exception e) {

return null; }
}

}

The CustomerSelect class utilises the JDBC API. The
constructor accepts one integer parameter. The external refer-
ence (#[1]<I>) is replaced with a “?” in the generated code
and a typical PreparedStatement is used.

VI. RELATED WORK

We studied approaches that extend functional languages,
such as Haskell [9], [10] and other implementation efforts that
were based on general-purpose languages like Java and C++
[11], [12], [13]. Table I categorises the case studies that are
presented in this section, according to Mernik et al. [3].

There is also a lot of work on the theoretical aspects of the
Java programming language, like its type system [14], [15].
Theoretical research also included multi-language systems and

their type systems [16], which reveals a research direction,
how to efficiently intermix programming languages.

The Boo programming language provides a Python inspired
syntax and features String Interpolation and support for regu-
lar expressions implementing the Implementation:Embedding
pattern.

An noteworthy approach for regular expression embedding
is used by Perl [17]. Perl introduces operators that efficiently
integrate regular expressions within the language syntax.

Haskell/DB [9] is a host language variant that has been ex-
tended to encapsulate SQL queries. This approach completely
hides the DSL from the developer, hindering productivity and
forbidding domain experts to become involved with the devel-
opment process. Haskell/DB follows the Creational:Language
Extension.

Python provides support for regular expressions and SQL.
Database tables are encapsulated in classes extending the
SQLObject. This mechanism permits the developer to exe-
cute simple queries without writing SQL, thus partially solving
the problem of an erroneous query, simply by generating it
automatically through library code.

Powerscript is the core development language for the
database development environment Powerbuilder. Powerscript
is a specialization of the BASIC programming language lan-
guage that supports integration with SQL. This is a classic
example of Creational:Language Specialisation pattern, where
a general-purpose language (BASIC), is restricted to a spe-
cialised development language for database applications. Pow-
erscript provides syntax and type checking in the integrated
SQL queries.

C# and Java share many common characteristics in their
support of DSL languages. They both support regular expres-
sions and SQL using the Implementation:Embedding pattern.

SQL DOM [18] acts as a pre-processor that translates an SQL
database schema in C#. The generated collection of objects
is used as an API to the main application, thus ensuring type
safety and syntax checking. Notably, the SQL statements in this
approach are generated with a provided getSQL() method.
Cω [19] integrated both SQL and XML into its syntax extending
the C# programming language.

XJ [11] provides XML static type checking with the ex-
tension of additional data types from an XML schema. XACT
[12] and JDBC Checker [13] provide a completely differ-
ent approach; they try to determine possible dynamically
generated DSL statements during compile time, and provide
error checking. JWIG is an interesting extension of Java for
better web service development support [20]. Machete [21]
is another Java extension that provides mechanisms towards
the unification of pattern matching languages such as regular
expressions, structured term patterns, XPATH and bit-level
patterns. ILEA (Inter-LanguagE Analysis) [22] is a JVML (Java
Virtual Machine Language) extension that permits extensive
analysis in C source code, to cover JNI call problems. Jeannie
[23] addresses the intermixing of Java and C at the program-
ming language level.

Metaborg [24] utilises similar techniques for code gen-



TABLE I
CATEGORISATION OF MULTI-LANGUAGE SYSTEMS

Implementation Pattern
Boo (regex) Implementation:Embedding
Haskell/DB (SQL) Creational:Language Extension
JDBC Checker (SQL) Implementation:Compiler
Powerscript (SQL) Creational:Language Specialisation
XJ (XML) Creational:Language Extension
XACT (XML) Creational:Language Extension
Cω (SQL, XML) Creational:Language Extension
Perl (regex) Creational:Language Extension
Java (regex,SQL) Implementation:Embedding
SQL DOM (SQL) Implementation:Preprocessor
J% (any) Implementation: Extensible

compiler/interpreter
JWIG (XML) Creational:Language Extension
Ruby (regex,SQL) Implementation:Embedding
Python (regex,SQL) Implementation: Embedding
Jeannie (C) Creational: Language Extension
Metaborg (any) Implementation: Extensible

compiler/interpreter

eration, allowing language extensions and utilising existing
application libraries. Its main problem is that it does not
present a unified method for embedding. On the contrary, it
encourages the developers to use their syntactic extensions for
each module.

VII. CONCLUSIONS AND FUTURE WORK

J% is a language extension of Java that integrates DSL in an
modular way. It also provides with syntax and type checking
between DSL and Java. We also saw a few concrete examples
of J% usage through its regular expression and SQL modules.

The modules presented are exhibiting the basic facilities
of the J% compiler, and in the future we plan to add more
features, exploiting further the compiler’s awareness of the
DSL code.

Upon maturation of the current prototype, we plan to add
support for XML, named parameters for the DSL code blocks,
and further study the following open issues:

• Host Language Support Current J% design and imple-
mentation focus only at the extension of the Java pro-
gramming language. It would be interesting to explore,
how the same set of techniques and methods could be
applied on other languages, like C++.

• Dynamic DSL generation Our extension deals only for
static DSL statements. In the future we plan to utilise
existing research [12], [13] and provide mechanisms to
check dynamically generated statements.

• Compile Time Optimisations In many cases, the
domain-specific language module, can act as an optimiser
for DSL generated statements, such as code generation for
regular expression.

• Unified Debugging process Typical debugging solutions
are not fit for J%. The debugger must also support plug-
ins for all the integrated programming languages. The
debugging facilities, such as breakpoints, must work in
an inter-unique way.

VIII. AVAILABILITY

A prototype version of the J% compiler is available at http:
//gaijin.dmst.aueb.gr/∼bkarak/programs/jmod/.

ACKNOWLEDGMENT

The research work presented in this publication is funded by
AUEB’s Funding Programme for Basic Research 2008 (project
number 51).

REFERENCES

[1] J. Placer, “Multiparadigm research: a new direction of language design,”
SIGPLAN Notices, vol. 26, no. 3, pp. 9–17, 1991.

[2] P. Zave, “A compositional approach to multiparadigm programming,”
IEEE Software, vol. 6, no. 5, pp. 15–25, 1989.

[3] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys, vol. 37, no. 4,
pp. 316–344, 2005.

[4] A. van Deursen and P. Klint, “Little languages: little maintenance,”
Journal of Software Maintenance, vol. 10, no. 2, pp. 75–92, 1998.

[5] J. Bentley, “Programming pearls: little languages,” Communications of
the ACM, vol. 29, no. 8, pp. 711–721, 1986.

[6] M. Fisher, J. Ellis, and J. Bruce, JDBC API Tutorial and Reference,
3rd ed. Addison Wesley, 2003.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language
Specification, 3rd edition. Addison-Wesley, 2005.

[8] T. Lindhorn and F. Yellin, The Java Virtual Machine Specification,
2nd ed., ser. The Java Series. Addison-Wesley, 2003.

[9] D. Leijen and E. Meijer, “Domain specific embedded compilers,” in
PLAN ’99: Proceedings of the 2nd conference on Domain-specific
languages. ACM Press, 1999, pp. 109–122.

[10] P. Thiemann, “Programmable type systems for domain specific lan-
guages,” 2002.

[11] “Xj: Facilitating xml processing in java,” World Wide Web (WWW), May
2005, (to appear).

[12] C. Kirkegaard, A. Moller, and M. I. Schwartzbach, “Static analysis
of XML transformations in java,” IEEE Transactions on Software
Engineering, vol. 30, no. 3, pp. 181–192, March 2004.

[13] C. Gould, Z. Su, and P. Devanbu, “Static checking of dynamically
generated queries in database applications,” in Proceedings of the 26th
International Conference on Software Engineering (ICSE’04). IEEE,
may 2004, pp. 645–654.

[14] S. Drossopoulou, S. Eisenbach, and S. Khurshid, “Is the java type system
sound?” Theory and Practice of Object Systems, vol. 5, no. 1, pp. 3–24,
1999.

[15] D. Syme, “Proving java type soundness,” in Formal Syntax and Seman-
tics of Java. London, UK: Springer-Verlag, 1999, pp. 83–118.

[16] J. Matthews and R. B. Findler, “Operational semantics for multi-
language programs,” in POPL ’07: Proceedings of the 34th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM Press, 2007.

[17] L. Wall, T. Christiansen, and J. Orwant, Programming Perl. Sebastopol,
CA: O’Reilly, 2000.
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