
Securing e-voting against MITM attacks
Dimitris Mitropoulos and Diomidis Spinellis

Department of Management Science and Technology
Athens University of Economics and Business

Email: {dds,dimitro}@aueb.gr

Abstract—Man in the middle attacks involve the interception
and retransmission of electronic messages in a way that the
original parties will presume that their communication is secure.
Such an attack could be a threat to any electronic voting scenario.
This paper proposes a novel method for preventing this kind of
attacks by including in the transaction a challenge-response test.
The human end-user is asked to vote through an image-based
challenge that will foil a typical automated software-based attack.
The image is crafted so as to include multiple challenge nonces
as a way to select the user’s vote. The approach’s strength is
based on the difficulty of malicious software to falsify the image
or emulate the user’s response.

I. INTRODUCTION

The quintessence of an e-voting transaction is to be secure
[1]. In the e-voting context, security issues are very subtle.
This is because there are features that clash with each other.
For example, guaranteeing anonymity, makes it harder to track
election fraud [2], [1]. In addition, security in e-voting is
highly related to the type of the technology used during
the process. There are two basic forms of e-voting, namely:
presence and distance [3]. The former takes place in a specific
station, using an ad hoc machine and under the supervision of
the election’s administration. In distance e-voting, the voter
can cast his vote from his personal computer by sending it
to a central server via the internet. The electronic, network-
based nature of the latter makes it susceptible to a wide range
of attacks [4].

One of the most important and potentially damaging class
of attacks that must be taken into account when designing
and implementing secure e-voting systems are man-in-the-
middle attacks (MITMAs) [5], [6], [7]. In a common MITMA,
an intermediate party is placed between the client side and
the server side wiretapping their communication and retrans-
mitting messages as he chooses. During the attack neither
side is aware that the private communication is being illegally
monitored [6], [8], [9]. From the capturing of a session cookie
to the altering of an online payment, MITMAs can cause
considerable damage to both sides of a transaction.

PCI 2009: 13th Panhellenic Conference on Informatics, Corfu, Greece,
September 2009.

This is a machine-readable rendering of a working paper draft that led to
a publication. The publication should always be cited in preference to this
draft using the reference in the previous footnote. This material is presented
to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders.
All persons copying this information are expected to adhere to the terms and
constraints invoked by each author’s copyright. In most cases, these works
may not be reposted without the explicit permission of the copyright holder.

Using CAPTCHAs1 to defend network transactions is not a
new idea [10]. At first, CAPTCHAs were introduced in order
to prevent dictionary attacks and search engine bots [11]. But
later they were also used to secure online transactions [12],
prevent DoS attacks [10], fortify online gaming [13], enhance
anti-spam protocols [14] and detect data input attacks [15].

In this paper we describe a technique that utilizes
CAPTCHAs in conjunction with a transaction authentication
number (TAN), to prevent MITMAs within the context of a
network-based electronic voting transaction. Our proposed
security layer fortifies the integrity of the user’s vote on
an end-to-end basis. Our approach does not deal with other
aspects of e-voting security, such as voter anonymity and
system availability [16], [17]. To prove the validity of our
proposal, we focus on a simple e-voting transaction.

II. ATTACK SCENARIO

Consider a typical network-based, e-voting transaction. A
legitimate voter connects to a remote server via her personal
computer to vote for the elections. We assume that the MITM
has successfully deceived the legitimate parties and we exam-
ine the transaction right before the vote casting. The goal for
the attacker is to intercept the ballot and change the vote.

The attack can take place either locally or remotely. In the
former case a downloaded Trojan horse could play the role of
the MITM, hijacking an authenticated session [18].

In a remote attack the traffic is at first redirected to a
rogue server via e-mail phishing or pharming. Another way to
obtain packets intended for a legitimate server is by spoofing
ARP or DNS responses to the client. Then the server run by
the attacker, will act as proxy between the end user and the
real website keeping the authenticated session active while
modifying the transaction data [19].

The majority of internet transactions are made over HTTPS.
Still, a MITM can impersonate each party to the satisfaction of
the other over HTTPS [20]. Hence, our attack scenario is valid
even for transactions secured over HTTPS.

As an example, consider a vote choosing between the “Little
Endian” and the “Big Endian” political parties. In Figure 1 we
show the steps taken by an attacker in order to alter a vote for
the Little Endian party into a vote for the Big Endian party.
When the voter sends the vote to be registered, the MITM
replaces it with a different one. When the server sends back

1CAPTCHA stands for Completely Automatic Public Turing Test to Tell
Computers and Humans Apart.



Voter MITM Server

castVote(Little_Endian, authentication_info)
castVote(Big_Endian, authentication_info)

sendRequestForConfirmation(Big_Endian)

sendRequestForConfirmation(Little_Endian)

sendConfirmation(Little_Endian)
sendConfirmation(Big_Endian)

Fig. 1. Attack scenario.

a request of confirmation, the attacker conversely replaces the
tokens and passes the request to the client. The ignorant user
confirms the transaction leading to a successful attack.

III. APPROACH DESCRIPTION

Our approach is based on the idea of establishing an out-
of-band end-to-end secure communications channel between
the two transacting entities that is used for transaction signing.
However, instead of establishing a physical secondary channel
our scheme transfers over the existing channel data that the
MITM software cannot easily decrypt or modify, ensuring the
data’s confidentiality and integrity. (The MITM can however
generate a fake instance of such data; we discuss countermea-
sures in Section IV).

Initially, the users send to the server the vote’s authenti-
cation details using a strong (e.g. two factor) authentication
scheme—see Figure 2. The “two-factor authentication” is a
system where two different factors are combined to verify a
user [21]. Strong authentication is required, because otherwise
a MITM can capture a user’s credentials and rig the vote
through a simple impersonation attack. Given the cost and the
logistical problems of furnishing all voters with a hardware
authentication token, the simplest way to provide two factor
authentication is through a transaction authentication number
(TAN) that will be furnished to all registered voters in a secure
manner.

When the server receives the voter’s details it verifies the
transaction’s authentication data; for instance, that the TAN
matches the one expected for the specific voter. It then creates
a challenge in the form of a CAPTCHA image. This contains a
listing of the vote alternatives together with a nonce challenge
for each one; see the example in Figure 3. The image is
composed in a way that makes it very difficult for software to

1) decode the nonces’ value, and
2) incorporate the nonces in a fake image.

The user reads the image with the nonces, selects the vote
she wishes to cast and responds to the server’s challenge by
typing the corresponding nonce’s value, which is then sent to
the server. Finally, the server verifies that the nonce response

Fig. 3. An example of a MITM-resistant CAPTCHA.

is one of those offerred as the challenge, and, if it is, it casts
the vote.

In a typical attack the MITM will intercept the user’s vote
request and substitute the details of a fraudulent vote for
the vote the user requests. This allows the MITM to hijack
the user’s vote authentication data to cast a fraudulent vote.
Owing to the way the image is constructed the MITM software
is unable to decode a nonce and send it back to the server
(property 1). Furthermore, the MITM software is also unable
to construct an image containing false descriptions for the
server’s correct nonces (property 2), thus tricking the user to
respond to the challenge.

IV. WEAKNESSES AND COUNTERMEASURES

Our proposed scheme for protecting network-based e-voting
can be attacked by deciphering the image or by placing a
human accomplice in the loop. The complete tree of possible
attacks and countermeasures appears in Figure 4. In all cases
we assume that the malicious software is crafted to change a
user’s vote.

A. Image Processing Attacks

There are two possible attacks based on image analysis.
In the first one, the malicious software doctors the image



Voter Server

startVote(uid, TAN)

sendBallot(imageID, image(vote_nonce(Big_Endian, Little_Endian)))

castVote(imageID, vote_nonce(Little_Endian))

Fig. 2. A legitimate transaction with our proposal.

�����������	
���������

���	���
������	 �����������

����������
����	�����������
����������

������
��	 �
������
��	
������
������������
�����������
���
��������

�������
�����
��
 ��������
��!!�������������

�������
�����
��
������������
������������	�

Fig. 4. Attack tree and countermeasures.

changing the association between the choices and the nonces
to one that will favor the attacker. Since the attacker cannot
know the voter’s choice, this attack would entail putting the
nonce of a known favorite choice next to the ballot choice the
attacker wishes to promote. Our method hinders this approach
by including in the image the names of the choices and a
background pattern that makes it difficult to change any part
of the image without destroying the pattern’s continuity. In
addition, we prevent locating the nonce in order to separate
it by changing the font size of all letters and by adding
a random number of spaces between words. These choices
make the nonce appear in a place that is hard to determine
in advance. In another attack the malicious software decodes
the challenge and responds appropriately. It also presents the
user with a new false ballot image that will be ignored. This
attack can be resisted by hindering malicious software to
locate the challenge nonces (using the methods we outlined),
or recognize their text. Various methods have already been
proposed for this; our prototype implementation uses various
random fonts, font-sizes, and colors, and also skews, rotates
and perturbs the location of each letter.

Both attacks we describe are based on image analysis.
Considerable research has been published on the breaking
of visual CAPTCHAs. Machine learning attacks against the
Asirra CAPTCHA showed that the probability to break it is
significantly high [22]. Microsoft CAPTCHAs are also prone to
automated, low-cost attacks [23]. In addition, methods based
on shape context matching seem to be another efficient way

to identify words and phrases within CAPTCHAs [24]. Finally,
reverse engineering CAPTCHA instances using simple image
processing techniques is another proposed method [25].

B. Human-Based Attacks

An alternative, more devious form of attack involves putting
an actual human into the loop. This can happen in three ways.
First, the attackers can actively monitor e-vote transactions
and respond to the challenge of a forged transaction. This
however requires constant real-time monitoring and can be
inconvenient, especially if voting takes place over a short
period. Furthermore, it is a risky proposition, because it
puts the attackers into synchronous direct contact with the
malicious software, increasing the chance of tracing the attack
back to them.

A human could in theory be put in the loop without directly
involving the attackers. This can be done by outsourcing the
nonce recognition either to a free crowdsourcing application
[26] or to a payment-based system, such as the Amazon
Mechanical Turk [27]. However, given that for the attack to
work the nonces will have to be paired with candidate names,
this attack is likely to arise suspicion among the humans
performing the nonce recognition.

V. RELATED WORK

In this section we cover two areas. In the first we discuss a
variety of suggested solutions to counter MITMAs, and in the
second we present a number of proposals that reinforce the
security of e-voting.

A. Preventing MITMAs

A plethora of cryptographic techniques can be employed to
prevent MITMAs. The first to be introduced was the Interlock
Protocol [28]. To avert an eavesdropper attack this protocol
presumes that the client and the server must use an anony-
mous key exchange protocol. Still, this protocol proved to be
vulnerable when used for authentication [29].

Another cryptographic technique is the password protection
module (PPM) [30]. For every transaction, a unique password
is generated on the client side via hashing. The main flaw of
this approach is that it speculates that the MITM would not be
willing to perform a hashing in order to obtain a password for
himself.



The Secure Sockets Layer (SSL) protocol and the Transport
Layer Security (TLS) protocol are also designed in order to
cryptographically protect communication channels between
a client and a server. Based on the two aforementioned
protocols, SSL/TLS session-aware user authentication is one
of the most recent and promising proposals [6]. A mechanism
that secures tunnelled authentication protocols is also related
to this approach [31].

The Zurich Trusted Information Channel is another ap-
proach that utilizes SSL/TLS connections requiring minimal
to no changes in both server and client-side [9]. The main
disadvantage of this solution is its computational overhead.

Except for the cryptographic techniques, there are other
ways to prevent MITMAs. One of them is channel hopping
[32]. But this approach lacks implementation mechanisms
that ensure its validity. Others involve the hardening of web
browsers in a way that they will warn the user in case of a
certificate verification error while visiting a secure site [19].
Furthermore, to secure the secret key exchanging scheme an
approach that involves jigsaw puzzles was recently proposed
[33]. To acquire the secret key that will be used for the
transaction, both sides must embed their keys in an image,
and form a jigsaw puzzle image. Then they have to post it
on their websites and invite each other with an email in order
to proceed. This proposal is close to ours since it involves a
Turing test. Despite being firm, it may be time consuming in
large-scale deployments.

Also close to our method is a patent that utilizes CAPTCHAs
to shield e-banking against MITMAs [12]. According to this
proposal, every transaction is watermarked with a server-
generated CAPTCHA. This image contains a number that comes
from a secure device that is already in the possession of the
user. Our approach differs, because it uses a CAPTCHA as a
way to select among various choice, and does not require the
user to possess a secure two factor authentication device.

On the hardware front, a simple device called ”spies”, that
enables servers to establish client integrity is probably the
oldest proposed solution [8]. There are also some systems that
employ devices like smart phones, to make use of additional
communication channels and as a result thwart MITMAs [34],
[9]. For every transaction, a server-generated (TAN) is sent to
the users mobile phone via SMS together with a transaction
summary. If the summary is correct, the user sends the TAN
back to the server in order to confirm the transaction.

Apart from the countermeasures, there is also an increased
academic interest in MITM vulnerabilities in wireless networks
[35], software updates [36], single sign-on protocols like
Kerberos [37] and the Universal Mobile Telecommunication
Standard (UMTS) [38].

B. Secure e-voting

The security aspects of building a sound e-voting system
have been the subject of considerable research [39], [17], [40].
There are several systems that claim to provide security during
electronic elections. The Zurich e-voting system is a flexible,
modular e-voting system with a service-oriented architecture,

that is used in Switzerland since 2004 [41]. Also using
web services, and introducing the Election Markup Language
(EML), the three-ballot-based secure electronic voting system,
is similar to the aforementioned system, though it has not been
deployed in a real large-scale experiment. The same applies to
VOTEBOX, a direct recording electronic voting system (DRE)
that assembles ideas and techniques from current research [42].
To evaluate systems like the ones mentioned above, the E-
Voting System Security Optimization (EVSSO) method was
recently proposed [3].

Apart from the completed systems, there are other schemes
and protocols that protect the privacy of voter [43], [44], deal
with authentication [45], [46], ensure their anonymity [47],
[48], prevent double voting [49] and guarantee data integrity
[50].

VI. CONCLUSION

The network-based nature of distance e-voting makes it
prone to MITMAs, and especially the ones that take place
locally on a user’s inadequately secured PC. In that context
is very easy for malicious software to hijack an e-voting
session and replace a legitimate vote with a fraudulent one.
In this paper, we have proposed an electronic voting scheme
that secures the integrity of a user’s vote from MITMAs. Our
scheme is based on the idea that during electronic elections,
a Turing test can be utilized to determine whether a vote is
cast by a human or by malicious software. An advantage of
our proposal is that it does not require specialized hardware
or a physical secondary channel, thus making it suitable for
large-scale elections. Our scheme as such does not provide
user anonymity, because in the form we described it, its
authentication is based on a TAN. Hence, the e-voting system
that will benefit from our scheme must provide another layer
that will deal with the separation of the users’ authentication
details from their vote and the provision of an appropriate
auditing infrastructure. Finally, usability issues must be taken
into account since CAPTCHAs are not the most efficient
solutions especially for the elderly.

REFERENCES

[1] D. Evans and N. Paul, “Election security: Perception and reality,” IEEE
Security and Privacy, vol. 2, no. 1, pp. 24–31, 2004.

[2] M. Bishop and D. Wagner, “Risks of e-voting,” Commun. ACM, vol. 50,
no. 11, pp. 120–120, 2007.

[3] B. Ondrisek, “E-voting system security optimization,” in HICSS ’09:
Proceedings of the 42nd Hawaii International Conference on System
Sciences. Washington, DC, USA: IEEE Computer Society, 2009, pp.
1–8.

[4] D. Frith, “E-voting security: hope or hype?” Network Security, vol. 11,
pp. 14–16, 2007.

[5] J. Katz, “Efficient cryptographic protocols preventing “man-in-the-
middle” attacks,” Ph.D. dissertation, Columbia University, New York,
2002, publication number AAT3037726.

[6] R. Oppliger, R. Hauser, and D. Basin, “Ssl/tls session-aware user
authentication,” Computer, vol. 41, no. 3, pp. 59–65, 2008.

[7] D. Khusial and R. McKegney, “e-commerce security: Attacks and
preventive strategies,” IBM Toronto, Canada, Tech. Rep., April 2005.

[8] D. N. Serpano and R. J. Lipton, “Defense against man-in-the-middle
attack in client-server systems,” in ISCC ’01: Proceedings of the Sixth
IEEE Symposium on Computers and Communications. Washington,
DC, USA: IEEE Computer Society, 2001, p. 9.



[9] T. Weigold, T. Kramp, R. Hermann, F. Höring, P. Buhler, and
M. Baentsch, “The zurich trusted information channel — an efficient
defence against man-in-the-middle and malicious software attacks,” in
Trust ’08: Proceedings of the 1st international conference on Trusted
Computing and Trust in Information Technologies. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 75–91.

[10] C. Pope and K. Kaur, “Is it human or computer? defending e-commerce
with captchas,” IT Professional, vol. 7, no. 2, pp. 43–49, 2005.

[11] L. V. Ahn, M. Blum, and J. Langford, “CAPTCHA: Using hard ai
problems for security,” in In Proceedings of Eurocrypt. Springer-Verlag,
2003, pp. 294–311.

[12] D. J. Steeves and M. W. Snyder, “Secure online transactions using
a captcha image as a watermark,” US Patent 7200576, Apr. 2007.
[Online]. Available: http://www.freepatentsonline.com/7200576.html

[13] P. Golle and N. Ducheneaut, “Preventing bots from playing online
games,” Comput. Entertain., vol. 3, no. 3, pp. 3–3, 2005.

[14] S. Shirali-Shahreza and A. Movaghar, “A new anti-spam protocol using
CAPTCHA,” Networking, Sensing and Control, 2007 IEEE International
Conference on, pp. 234–238, 15-17 April 2007.

[15] T. Schluessler, S. Goglin, and E. Johnson, “Is a bot at the controls?:
Detecting input data attacks,” in NetGames ’07: Proceedings of the 6th
ACM SIGCOMM workshop on Network and system support for games.
New York, NY, USA: ACM, 2007, pp. 1–6.

[16] A. Xenakis and A. Macintosh, “Procedural security analysis of electronic
voting,” in ICEC ’04: Proceedings of the 6th international conference on
Electronic commerce. New York, NY, USA: ACM, 2004, pp. 541–546.

[17] E. Barr, M. Bishop, and M. Gondree, “Fixing federal e-voting standards,”
Commun. ACM, vol. 50, no. 3, pp. 19–24, 2007.

[18] T. W. Lauer, “The risk of e-voting,” Electronic Journal of e-Government,
vol. 2, pp. 177–186, 2004.

[19] H. Xia and J. C. Brustoloni, “Hardening web browsers against man-in-
the-middle and eavesdropping attacks,” in WWW ’05: Proceedings of
the 14th international conference on World Wide Web. New York, NY,
USA: ACM, 2005, pp. 489–498.

[20] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-middle attack to
the HTTPS protocol,” IEEE Security and Privacy, vol. 7, no. 1, pp.
78–81, 2009.

[21] B. Schneier, “Two-factor authentication: too little, too late,” Commun.
ACM, vol. 48, no. 4, p. 136, 2005.

[22] P. Golle, “Machine learning attacks against the asirra CAPTCHA,” in
CCS ’08: Proceedings of the 15th ACM conference on Computer and
communications security. New York, NY, USA: ACM, 2008, pp. 535–
542.

[23] J. Yan and A. S. El Ahmad, “A low-cost attack on a microsoft captcha,”
in CCS ’08: Proceedings of the 15th ACM conference on Computer
and communications security. New York, NY, USA: ACM, 2008, pp.
543–554.

[24] G. Mori and J. Malik, “Recognizing objects in adversarial clutter: break-
ing a visual CAPTCHA,” Computer Vision and Pattern Recognition,
2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 1,
pp. I–134–I–141 vol.1, 18-20 June 2003.

[25] A. Hindle, M. W. Godfrey, and R. C. Holt, “Reverse engineering
CAPTCHAs,” Reverse Engineering, Working Conference on, vol. 0, pp.
59–68, 2008.

[26] D. C. Brabham, “Crowdsourcing as a model for problem solving: An
introduction and cases,” Convergence, vol. 14, no. 1, pp. 75–90, Feb.
2008. [Online]. Available: 10.1177/1354856507084420

[27] J. Barr and L. F. Cabrera, “AI gets a brain,” Queue, vol. 4, no. 4, pp.
24–29, 2006.

[28] R. L. Rivest and A. Shamir, “How to expose an eavesdropper,” Commun.
ACM, vol. 27, no. 4, pp. 393–394, 1984.

[29] M. Bellovin, S.M.and Merritt, “An attack on the interlock protocol when
used for authentication,” IEEE Transactions on Information Theory,
vol. 40, pp. 273–275, 1994.

[30] R. Security, “Enhancing one-time passwords for protection against real-
time phishing attacks,” Technology backgrounder, Tech. Rep., 2006.

[31] N. Asokan, V. Niemi, and K. Nyberg, “Man-in-the-middle in tunneled
authentication protocols,” In 11th Security Protocols Workshop, Tech.
Rep., 2002.

[32] A. Alkassar and C. Stble, “Secure object identification - or: Solving the
chess grandmaster problem,” in Proceedings of the 2003 Workshop on
New Security Paradigms. ACM Press, 2003, pp. 77–85.

[33] E.-J. Farn and C.-C. Chen, “A jigsaw puzzle based secret key exchange
scheme,” in Proceedings of the 2008 International Conference on
Machine Learning and Cybernetics. IEEE, 2008, pp. 3067–3071.

[34] C. K. Bryan Parno and A. Perrig, “Phoolproof phishing prevention,” in
Proc. Financial Cryptography and Data Security. Springer Berlin /
Heidelberg, 2006, pp. 1–19.

[35] H. Hwang, G. Jung, K. Sohn, and S. Park, “A study on MITM (man in
the middle) vulnerability in wireless network using 802.1x and eap,”
in ICISS ’08: Proceedings of the 2008 International Conference on
Information Science and Security. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 164–170.

[36] B. M. Luettmann and A. C. Bender, “Man-in-the-middle attacks on auto-
updating software,” Bell Lab. Tech. J., vol. 12, no. 3, pp. 131–138, 2007.

[37] I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad,
“Breaking and fixing public-key kerberos,” Inf. Comput., vol. 206, no.
2-4, pp. 402–424, 2008.

[38] U. Meyer and S. Wetzel, “A man-in-the-middle attack on UMTS,” in
WiSe ’04: Proceedings of the 3rd ACM workshop on Wireless security.
New York, NY, USA: ACM, 2004, pp. 90–97.

[39] C. Lambrinoudakis, E. Magkos, and V. Chrissikopoulos, “Electronic
voting systems,” in (Chapter): J. Lopez, S. Furnell, A. Patel, S. Katsikas,
(Ed.), ”Securing Information and Communication Systems: Principles,
Technologies and Applications”. Artech House Publishers, Computer
Security Series, 2008, pp. 307–323.

[40] M. Altman and G. M. Klass, “Current research in voting, elections, and
technology,” Soc. Sci. Comput. Rev., vol. 23, no. 3, pp. 269–273, 2005.

[41] G. E. G. Beroggi, “Secure and easy internet voting,” Computer, vol. 41,
no. 2, pp. 52–56, 2008.

[42] D. Sandler, K. Derr, and D. S. Wallach, “Votebox: a tamper-evident,
verifiable electronic voting system,” in SS’08: Proceedings of the 17th
conference on Security symposium. Berkeley, CA, USA: USENIX
Association, 2008, pp. 349–364.

[43] Y. Mu and V. Varadharajan, “Anonymous secure e-voting over a
network,” in ACSAC ’98: Proceedings of the 14th Annual Computer
Security Applications Conference. Washington, DC, USA: IEEE
Computer Society, 1998, p. 293.

[44] T. Rossler, H. Leitold, and R. Posch, “E-voting: A scalable approach
using XML and hardware security modules,” in EEE ’05: Proceedings of
the 2005 IEEE International Conference on e-Technology, e-Commerce
and e-Service (EEE’05) on e-Technology, e-Commerce and e-Service.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 480–485.

[45] O. Cetinkaya and A. Doganaksoy, “A practical verifiable e-voting proto-
col for large scale elections over a network,” in ARES ’07: Proceedings
of the The Second International Conference on Availability, Reliability
and Security. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 432–442.

[46] F. Rodriguez-Henriquez, D. Ortiz-Arroyo, and C. Garcia-Zamora, “Yet
another improvement over the mu-varadharajan e-voting protocol,” Com-
put. Stand. Interfaces, vol. 29, no. 4, pp. 471–480, 2007.

[47] B. Kang, “Cryptanalysis on an e-voting scheme over computer network,”
in CSSE ’08: Proceedings of the 2008 International Conference on
Computer Science and Software Engineering. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 826–829.

[48] T. Moran and M. Naor, “Split-ballot voting: everlasting privacy with
distributed trust,” in CCS ’07: Proceedings of the 14th ACM conference
on Computer and communications security. New York, NY, USA:
ACM, 2007, pp. 246–255.

[49] W.-C. Ku and C.-M. Ho, “An e-voting scheme against bribe and
coercion,” in EEE ’04: Proceedings of the 2004 IEEE International
Conference on e-Technology, e-Commerce and e-Service (EEE’04).
Washington, DC, USA: IEEE Computer Society, 2004, pp. 113–116.

[50] n. Goirizelaia, I T. Selker, M. Huarte, and J. Unzilla, “An optical scan
e-voting system based on n-version programming,” IEEE Security and
Privacy, vol. 6, no. 3, pp. 47–53, 2008.


