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Abstract—A common requirement of many empirical soft-
ware engineering studies is the acquisition and curation of data
from software repositories. During the last few years, GitHub
has emerged as a popular project hosting, mirroring and
collaboration platform. GitHub provides an extensive REST API,
which enables researchers to retrieve both the commits to the
projects’ repositories and events generated through user actions
on project resources. GHTorrent aims to create a scalable off
line mirror of GitHub’s event streams and persistent data, and
offer it to the research community as a service. In this paper,
we present the project’s design and initial implementation and
demonstrate how the provided datasets can be queried and
processed.
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I. INTRODUCTION AND MOTIVATION

When conducting empirical research with data from soft-
ware repositories, a typical step involves the downloading
of the project data to be analysed. Obtaining data from
open source software (OSS) project repositories is a tedious
exercise lacking scientific value, while the obtained datasets
are often non-homogeneous which makes further analysis
difficult. An indicative example of data disparity is that
of developer identities; as projects use several management
tools to support development, it can be very difficult to
track a single developer’s trails across those tools reliably,
because the developer can employ multiple login identi-
ties. Moreover, while product data (mainly source code)
is straightforward to retrieve and process, the same does
not hold for process data (issues, wikis etc., because what
researchers can usually obtain from repositories are static
snapshots containing little evolutionary information.

GitHub is a relatively new project hosting site, which, due
to its developer-friendly features, has enjoyed widespread
acclaim and adoption. GitHub bases its operation on the
git [1] revision management system, not only for source
code versioning but also to handle the project’s wiki. GitHub
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also facilitates project contributions from non-team members
through features such as forking, which creates a private
copy of a git repository, and pull requests, which organize
a series of commits to a forked repository into a mergeable
patch for the source repository. Moreover, GitHub offers
the usual gamut of software forge facilities, such as a
bug tracker, a wiki, and developer communication tools.
What makes GitHub particularly attractive for the repository
mining community, is that it provides access to its internal
data stores through an extensive REST [2] APL! which
researchers can use to access a rich collection of unified
and versioned process and product data.

Although GitHub’s API is well designed and documented,
researchers wishing to use it in order to analyze its data will
face a number of challenges.

« GitHub’s data is huge (on the terabyte scale, according
to our estimation) and an API rate limit of five thousand
requests per hour makes the complete download of the
data impossible.

e The overall schema of GitHub’s data is not docu-
mented. A researcher wishing to explore it would have
to reverse engineer it from the available REST requests
and the corresponding JSON [3] replies.

« The API does not provide facilities to obtain collections
of the data’s key entities; the existing API calls mainly
allow navigation from one entity to another.

« Events are only provided as streams, which disappear
into a sliding window of 300 entries.

In this work, we present GHTorrent a service that gathers
event streams and data from the GitHub hosting site and
provides those data back to the community in the form of
incremental MongoDB data dumps distributed through the
peer-to-peer BitTorrent [4] protocol.

The main contributions of this work are the following.

¢ The documentation of GitHub’s schema, the use of the
REST API to navigate through its elements, and the
relationship between events and static entities (Section
1.

o The design and implementation of an extensible infras-
tructure for the collection of all (the normally fleeting)
events exposed through GitHub’s API (Sections III and

Ihttp://developer.github.com/v3/
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IV). The collected events are browsing roots for col-
lecting virtually all information in a project’s timeline.

o The collection of half a year’s worth of commits into
a permanent store. These can now be downloaded and
used as starting points for deep crawling operations.
Through these recorded events one can combine the
GHTorrent database with the GitHub API to examine
more than 200 thousand users and 400 thousand repos-
itories.

o The realization of a scalable mechanism for providing
researchers with GitHub’s data, based on distributing
incremental data dumps using a peer-to-peer protocol.

o The provision of data that can track developers through
both a project’s process (issue tracking, wiki) and
its corresponding source code without resorting to
heuristics. In Section V, we present evidence that the
GHTorrent dataset can be used towards answering non-
trivial research questions in a scalable manner.

II. GITHUB’S STATIC SCHEMA AND EVENT STREAM

An overview of the most important elements of GitHub’s
static data schema appears in Figure 1. A wuser who signs
into GitHub and can create a repository under her account,
or she can manage repositories belonging to other users by
participating to an organization or a team defined within the
organization to manage repository access rights. A repository
is the equivalent of what other hosting providers call a
project. A user can commit changes to the repository; these
may originate from another author. An issue associated with
the repository documents a problem or a feature request.
It can be associated with a milestone, which refers to a
collection of issues that must be closed on a target date.
A pull request associated with the repository presents some
changes that a user can integrate into the repository. Both
issues and pull requests can have comments associated with
them. Finally users can follow each other and see the
followed user’s activity.

GitHub provides a REST API to navigate between the
various entities. Figure 1 lists the navigation paths and the
corresponding URLs as edges between the graph’s elements.
Other links, such as an issue’s assignee, a commit’s author,
or a milestone’s creator, are embedded directly within the
returned elements and can be identified in the Figure through
their corresponding data types.

In Figure 1, a commit’s user, author, and parents appear on
a grey background to signify that the philosopher’s stone of
software repository miners, namely the relationship between
commits and other repository data, is not always directly
available on a commit’s fields. Commits appearing as push
events (see below) or retrieved through their SHA value are
associated with an author and a committer that are only given
in free text form. For instance, a commit may contain

"committer": {
"email": "Jjason@curlymedia.com",

"date": "2012-01-26T08:19:43-08:00",
"name": "Jason Tempestini"

}y

"author": {
"email": "ddrake@dreamingmind.com",
"date": "2012-01-22T22:52:49-08:00",
"name": "Don Drake"

On the other hand the GitHub user associated with the
commit is identified by attributes such as the following,
which do not appear in the commit’s data.

"actor" : {
"gravatar_id"
"45d832888£d298d145b91b687130db7£",
llurl n
"https://api.github.com/users/curlyjason",
"id" : 1307159,
"login" "curlyjason"

One can match formal GitHub users with their commits
by means of heuristics, such as (approximate) matches
on the user’s name and email address and hope for the
best. Fortunately, as we shall see, the dynamic view of
GitHub provided through events contains data for making
the corresponding connection. In addition, commits retrieved
using the repos/:user/:repo/commits URL contain both fields.
Even then, the author field is correctly filled-in, only if the
author submitted the change through GitHub.

In parallel with the access of GitHub’s persistent data
the API also provides a mechanism for retrieving a stream
of events through a /events REST API request. This stream
provides an overview of GitHub’s activity, and is normally
used to trigger various actions and update status displays.
Crucially for our goals, we can also use this event stream as a
starting point for mining GitHub’s static repository and also
for associating commits with specific users and repositories.
Figure 2 depicts how the GitHub API events are associated
with many of the schema’s persistent entities. Most events
provide a user and a repository, and some, like ForkEvent
provide two. Although an organization is part of all events’
data in practice few of the events link to an organization.
Three events, Issues, IssueComment, and PullRequest link
to an issue.

Most importantly, two events, ForkApply and Push link
to a commit. For instance, the following PushEvent event
identifies both a GitHub user and a repository.

"repo" : {

"name" "codl/autoplay",

"url" "https://api.github.com/repos/codl\
/autoplay",

"ig" 815830
b,
"actor" : {

"gravatar_id" "732afal?2ebl8eba9b8888b0d69\
ba2£7d",

"url" "https://api.github.com/users/codl",
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"id" 315139, }
"login" "codl" }
by
"payload" : { III. THE DESIGN OF GHTORRENT
"commits" : [ . . . . .
( According to its current front page, GitHub is hosting
"sha" : "6£80371734£3707e1e95638d7f0ef1\ almost 4 million repositories from 1.5 million users. Even

2b54c6ea8c",

Through the payload’s SHA values (a cryptographic
hash uniquely identifying each commit) one can
also issue a REST API GET request on the resource
https://api.github.com/repos/codl/autoplay/git/commits/
6f8037173413707¢1e95638d7f0ef12b54c6ea8c to obtain the
associated commit.

"committer": {
"email": "codl@aquageek.net",
"date": "2012-01-26T06:45:10-08:00",
"name": "Corentin Delcourt"
b
"message": "fix #7 \"dies if mpd is stop\
ped\"\n",
"author": {
"email": "codl@aquageek.net",
"date": "2012-01-26T06:40:56-08:00",
"name": "Corentin Delcourt"
b
"parents": [
{
"sha": "7758a468924a28487c0a35409%e9%a0e\
edebf83£f63"
}
1y
"sha": "6£f80371734£3707e1e95638d7f0efl12b54\
cobea8c",
"tree": {
"sha": "1dd47caed45408abf26551e5073d3d6a2\
dc015334d"

though the majority of the repositories are inactive forks of
well known projects (e.g. the node. js project has 13,000
forks), GitHub receives more than 70,000 commits per
day (see Figure 4(a)). In comparison, SourceForge retrieves
an average of 6,000 commits per day.” As a result, the
processing, storage and network capacity requirements to
process the entire GitHub commit stream can be quite steep.
In addition, the event stream imposes temporal restrictions;
if the mirroring is too slow and events are lost, then the static
data view at any point cannot be reconstructed through event
replication, as initial data pointers will be lost. Furthermore,
in order to be useful, the format of mirrored data distribution
should enable the community to incrementally update their
copies when new versions of the data become available
while not taxing the project’s host bandwidth or requiring
to perform any queries to GitHub.

GHTorrent is designed to cope with scale through the dis-
tribution of the data collection and its replication among re-
search teams. GHTorrent is designed to use multiple hosts for
collecting the GitHub static data and dynamic events, thus
overcoming the rate limit restrictions. In the future a network
of co-operating research teams, where each of which uses
its own infrastructure to mirror diverse parts of the GitHub
data, can cooperate to increase the data’s coverage. The
collected data are then distributed among the research teams
in the form of incremental data dumps through a peer-to-peer

2As can be retrieved through SourceForge’s home page header at
http://sf.net/



protocol. The data’s replication among those downloading
it, ensures the distribution mechanism’s scalability. Three
types of dumps are necessary for the reconstruction of a
full project’s view.

o Events, which contain aggregated pointers to the data
generated through actions performed by users on the
repositories. They are useful for tracking the project’s
timeline.

e Raw data, which contain the data pointed to by the
events. These are divided among the various entities
stored in GitHub: users, organizations, teams, com-
mits, issues, repositories, pull requests, issue comments,
milestones, and pull request comments.

e State data, which are generated by post-processing the
raw data to recreate the project’s state at certain points
in the project’s timeline.

The GHTorrent project was designed to evolve through the
following phases.

1) We collected commits through GitHub’s RSS feed
(initially) and its commit stream page when the RSS
feed became unavailable. This effort allowed us to
fine-tune the collection mechanism, the database, and
the project’s data distribution protocol. The collected
data form the basis for the 2011 datasets.

2) We changed the collection to be based on events. We
collect data for commits and watch events and plan to
add all other types of events in the collection queue.
This is an ongoing effort and forms the basis for the
datasets distributed from 2012 onward.

3) We expanded the collection operation to use event data
as the starting point for deep crawling operations to
collect raw data. This effort started in February 2012
and its results will appear in forthcoming datasets.

4) We plan to engage with the research community to
overcome growth challenges by splitting the collection
and processing work among multiple sites on project
partner’s premises. The work will include additional
crawling and the processing of raw data to create
state data representations. The project’s peer-to-peer
distribution mechanism is ideal for engaging multiple
teams with minimal central coordination effort.

Data is distributed among researchers using the Bit-
Torrent [4] peer-to-peer protocol as incremental database
compressed dump files named after the month they appeared.
Each file contains one or more sets of data; nodes of the
database’s hierarchy. This allows the future splitting of the
data collection and processing among more teams. A time
stamp stored with each entry ensures that there is an exact
split of the data between the incremental dumps. Through
the successive loading of all the incremental GitHub dumps
a researcher can obtain a complete copy of the project’s data.
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In the following sections, we describe how we imple-
mented the software to provide data for the project’s first
three phases.

IV. IMPLEMENTATION

The mirroring scripts were designed from the ground up
to work in a cloud computing environment, with multiple
crawlers retrieving data from the GitHub API in parallel,
while respecting the per-IP resource usage limits. All mir-
roring operations are performed twice by instances of each
specific crawler running in two separate data centers, to en-
sure that all data generated by GitHub is accurately persisted
in the system’s data store. Retrieval of data is performed in
stages, which are connected through the pipeline paradigm
over a message queue. The retrieved data are stored in a
document-oriented NoSQL database, to accommodate future
changes to the data returned by GitHub. An overview of the
mirroring architecture is presented in Figure 5.

The data retrieval is performed in two phases: in the event
retrieval phase, a crawler queries the GitHub events API, and
stores new events in the events data store. It then sends the
payload of each new event as a topic exchange message
to the system’s message queue, along with an appropriate
routing key. In AMQP-based queueing systems, such as
RabbitMQ, which we are currently using, topic exchanges
enable clients to declare queues selecting the required mes-
sages by applying regular expressions on message routing
keys. Therefore, during the event processing phase, clients
setup queues and select interesting messages for further
processing; for example, the commit retrieval client selects
all messages routed as commits and then queries GitHub for
the commit contents. Similarly, the project details retrieval
agent can setup a queue that collects all watch and fork
events to query GitHub and update the project’s state in the
local database mirror.

Both processing phases can run independently on multiple
hosts, to ensure fault tolerance in case of a host or network
problems. Clients in the data processing phase can run
either in load balancing mode, thus re-using existing queue



declarations, or in high availability mode by declaring client-
exclusive queues. Processing is not necessarily performed
online; as raw events are stored in the database, a researcher
can reprocess all events by requeueing the stored events as
necessary. This allows for new types of event processing
clients to be developed at any time, as long as the GitHub
data formats remain unchanged.

A problem that we had to deal with was adhering to
GitHub’s API usage restrictions, which currently limits hosts
to 5.000 requests per hour. The problem mostly manifests
during the second phase of data retrieval operations, since
for each retrieved event that is queued, at least one and
usually more additional requests to the GitHub API must
be performed. As our top priority was to ensure that all
events are retrieved, we run the event retrieval component
in a standalone instance; the rate of requests is dynamically
moderated by comparing for each request the number of
new events to the number of events already retrieved. We
found that a rate of 450 requests per hour is adequate to
keep up with GitHub’s event stream. For the second phase
data of retrieval operations, we employ a strict rate limit
of 80 requests per minute to comply with GitHub’s policy.
This rate is usually not adequate to retrieve all data from a
single host and messages fill the queue, unless more hosts
are added in load balancing mode.

The data is stored in a MongoDB database [5]. MongoDB
is known to be able to handle large collections of un-
structured data. It can scale to multiple hosts by evenly
distributing both data storage and data querying operations
across multiple hosts. Moreover, MongoDB offers some sup-
port for the Map-Reduce [6] data processing model, which
has been received with interest in the repository mining
community [7]. Given the amount of data available, the strict
consistency guarantees offered by traditional databases can
be relaxed in order to scale data processing on multiple
hosts [8]. The data is stored in MongoDB’s native BSON
format, which we then exploit to generate incremental data
dumps efficiently.

To distribute the mirrored data, we opted for periodic
archiving of the data and delivery through the P2p BitTor-
rent protocol or direct downloads through a web server.
The choice of BitTorrent as a medium for distribution
was directed by the fact that it permits the distribution
of bandwidth load across participating partners. Also the
protocol is more widely used than niche content distribution
technologies such as Tahoe 3 or MogileFs* which in turn
incurs less administrative effort to end users. Moreover,
sophisticated BitTorrent clients or custom made scripts can
use RSS feeds to discover new torrent files on our site,
automatically download the linked data dumps and import

3https://tahoe-lafs.org/~warner/pycon-tahoe.html
“http://danga.com/mogilefs/

Table I
VARIOUS METRICS IN THE CURRENT DATASET

Metric Value

Number of commits (since Aug 2011) 8,817,685
Number of events (since 1 Feb 2012) 4,512,000
Number of active repositories 424,995
Number of active committers 203,470
Average commits per day 41,300

Average events per day 94,189

Size of commits for typical (.bz2) 80MB
Size of events per day (.bz2) 23MB

Size of available uncompressed data 76GB
Size of available compressed data 18GB

them to MongoDB, enabling full automation of the data
distribution process.

To generate the data archives, we query MongoDB for data
in time windows, currently one month long. Every archive
contains a dump of the data of each MongoDB collection
within the specified time window. For each archive, we
construct a torrent file which contains a list of tracker servers
and content hashes for file chunks.’ The torrent files are then
linked in a directory monitored by the rforrent program,
which picks them up and registers them to the specified
trackers. The torrents are then ready for download by the
community.

V. USING THE SERVICE

To use the service as a peer, a researcher must first
download a data snapshot and import it in a locally installed
version of MongoDB. The available data collections are
currently commits and events (their sizes are indicated in
Table I), but as the project enters into phase 2 and data from
events are beginning to get processed, more collections will
follow. For each collection, the project distributes a series of
monthly dumps. Processing the provided data is relatively
easy with any mainstream programming language. From our
experience, untyped languages that provide inherent JSON
support, such as Python and Ruby, are very well suited for
prototype building.

A. Interesting Facts

Table I presents various size metrics about the current
status of the GHTorrent dataset. In about eight months
of operation, our crawler collected roughly nine million
individual commits in 425 thousand repositories. Figure 4(a)
shows the number of commits collected per day. The plot
is divided in three periods; up to end Nov 2011, we polled
GitHub’s timeline RSS feed in order to retrieve the commits.
After GitHub deprecated the RSS feed, we scraped the
generated timeline page, which was not refreshed as often.
After version three of the Github API was introduced, we
switched to collecting commits through PushEvents. This

STrackers are central nodes in the BitTorrent network which regular nodes
query in order to discover peers that offer chunks of the downloaded file.



lead to the collection of more than 70 thousand commits
per day. The short period of apparent inactivity at the end
of Feb 2012 was the result of a bug in the event mirroring
script, which manifested in both event retrieval nodes. We
have since employed mechanisms to monitor the daily event
retrieval activity in order to make sure that such problems
will not remain undetected for more than a few hours.

Table I also shows that the number of generated events
is staggering; every day more than 90 thousand events, the
majority of which, as Figure 4(b) shows, are PushEvents are
added to our database. Even if each event contained only
one data item worth retrieving with an additional request, it
would take on average 18 hours to retrieve all pointed items,
given GitHub’s API request rate limit for a single host. In
practice most events, especially PushEvents, contain more
than one events worth retrieving, which means that a single
host cannot keep up with GitHub’s event stream.

GitHub is collaborative platform used by developers
around the world. As this paper’s second author has shown
in previous work [9], work never stops in global software
development projects. To investigate in what extend this
happens on the GitHub dataset, we plotted the distribution
of commits within the hours of the day for all commits
in the project’s archives. The times for the commits where
adjusted to UTC. What we see in Figure 4(c) is that de-
velopment does indeed take place around the clock, with
a peak around the time that both European and American
developers are active. This finding is in agreement with
Takhteyev and Hilts [10], who, using geocoding information
based on developers’ email domains, found that the majority
of developers indeed reside in the US (43.1%) or Europe
(20,3%). Interestingly, our data also show a feature normally
associated with paid-work employment habits: an energetic
start on a Monday with productivity declining as the week
progresses (Figure 4(d)). (However, we suspect that work
during weekends would be lower in projects not staffed by
volunteer developers.)

B. Estimating Average Commit Sizes

One of the usually discussed differences among program-
ming languages is the brevity they afford. It is widely
believed [11], [12] that functional programming languages
allow the expression of more concise code, while languages
such as Java and C++ are notorious in programming circles
for being more verbose. An approximation of the verbosity
of a language might be given by the commit sizes that pro-
grammers usually produce. While the hypothesis is fragile
as the size of a commit might depend on many factors,
such as project guidelines, programming style, framework
verbosity, indications might be obtained if a large number
of data points (commit sizes) is explored. The following
examination only serves as an example of how the GHTorrent
dataset can be used to answer an interesting question.
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Figure 5. Commit sizes (quartiles and outliers) across languages

To study the commit size across programming languages,
we used a snapshot of the dataset from late July 2011 up to
mid-March 2012. The dataset consisted of about 8,500,000
commits. To experiment with large scale computation, we
implemented a custom Map-Reduce process. In the map
phase, a script selected the git commit SHA-1 tokens and
appended them to a work queue; during the reduce phase,
another script retrieved the commit contents from the dataset,
identified the language that most files where written in
(through their filename’s extension) and calculated the length
of changed (both added and deleted) lines per file, which
was then saved to a text file. To run the experiment, we
used a combination of two physical machines in our cluster
and three virtual machines in a remote data center, all of
which were granted access to both MongoDB and to the work
queue running on the same physical machine. Throughout
the experiment neither MongoDB, nor RabbitMQ consumed
more than 10% of CPU power each.

The results of our case study can be seen in Figure 5. For
each language, we plotted a quartile boxplot along with its
outliers. The box plots were then sorted by median value
and the dataset outliers were added. While no conclusive
proof can be extracted from this chart, we can observe
a tendency of languages featuring functional programming
characteristics, such as Ruby, Lisp and Javascript to exhibit
a lower median and range values than languages that are
allegedly verbose, such as Java or C++. However, the real
value of this experiment is that it exhibited the feasibility,
usefulness, and scalability of our approach. Using a ready
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Figure 4. Facts extracted from the current version of the GHTorrent dataset

made data set, very simple Ruby scripts and powerful
processing abstractions (work queues, Map-Reduce), we
were able to distribute the processing load on a cluster of
machines and obtain a result in minutes.

VI. RELATED WORK

This work is not the first to gather data from software
repositories and offer them back to the community. Howison
et al [13], in the FLOSSmole project, collected metadata
from 0SS projects hosted on the Sourceforge site and offers
both the dataset and an online query interface. The dataset
consists of metadata about the software packages, such
as numbers of downloads or the employed programming
language. Since its original release, the FLOSSmole dataset
has been extended to include data from various OSS repos-
itories, albeit not in a unified format. The Flossmetrics
project [14] provides a dataset consisting of source code size,
structure and evolution metrics from several 0SS projects.
The Sourcerer project [15], apart from the analysis tools,

also provides a pre-processed dataset of code structure
metrics from thousands of Java projects. Similarly, the
Alitheia Core project [16], provides an analysis platform
and an accompanying dataset containing process and product
metrics. From the datasets mentioned above, FLOSSmole
has seen the widest adoption outside the research team that
produced it [17].

The bulk of the work on the repository mining community
is being carried out with data from centralized repositories.
As 0SS projects move en masse to decentralized source
code management repositories, researchers are slowly be-
ginning to explore the new opportunities provided by data
collected from such systems. In reference [18], Bird et al.
provided the first complementary account of the difficulties
and opportunities of mining Git repositories. Rahman and
Devanbu exploited [19] Git’s strong authorship capabilities
to study the impact of ownership and developer experience
on software defects. Capilupi and Cortazar used [20] Git’s
ability to track commit time at the developer’s cite to



produce a round the clock development bar chart similar
to ours (Figure 4(c)). Finally, Barr et al. [21] explored the
use of branches, a commonly cited advantage of distributed
version control systems, as a factor of distributed version
control adoption.

A common task when doing research with repositories
is that of tracking developer identities across data sources.
The problem manifested itself in the early repository mining
days, as the software configuration management systems
relied on user names to identify developers, while mailing
lists and bug tracking software used the developers’ emails.
The problem has been originally described by Robles and
Barahona in reference [22]. The authors describe simple
heuristics to match developer identities across a project’s
Subversion repository and its mailing lists. Bird et al. [23]
used similarity metrics to semi-automatically align multiple
email identities to unique users. In reference [16], we expand
on this work by adding approximate string matching heuris-
tics, which slightly improved the identity matching score. A
more thorough treatment is described in reference [24]; the
author uses a set of string and partial matching heuristics
similar to ours, but allows them to be weighted in order
to compensate for different developer user name generation
conventions across projects. The data in the GHTorrent
dataset offer the potential for more precise analysis across
repositories, as git uses emails to identify developers, while
both bug descriptions and wiki entries coming from the same
developers feature their identity details. Most importantly,
and to the best of our knowledge uniquely among software
repository mining efforts, as we showed in Section II, the
datasets we provide enable researchers to map commits to
GitHub users, which in turn enables interesting correlation
possibilities between commits and issues.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we described the GHTorrent project, an
effort to bring GitHub’s rich product and process data to
the hands of the research community, in a scalable manner.
The project has already amassed several GB worth of data
and is distributing those over BitTorrent. The Github dataset
has a strong potential for providing interesting insights in
areas including but not limited to community dynamics,
global software engineering, distributed collaboration and
code authorship and attribution.

The GHTorrent project is in the initial stages of develop-
ment. The crawlers that GHTorrent uses currently retrieve
raw event contents and store them in MongoDB collections
according to the type of retrieved data. To reconstruct
Github’s data schema as presented in Figure 1, we need
to replay events on top of an initial state, which might not
be available in all cases. We are currently investigating ways
to both efficiently apply events in order to recreate the static
view and to go back in a user’s or repository’s history in
order to retrieve its initial state. We also plan to automate

the generation and distribution of torrent files through RSS
feeds and scripts that will monitor those and automatically
download and update remote databases. Finally, an interest-
ing challenge is to write tools or platforms that are able to
process the vast amount of data that GHTorrent offers.

The project is intended as a community effort. We are
actively seeking contributions that will enhance the col-
lected data’s utility to the research community. Ideas might
include further processing and extraction of new metadata
(e.g. project categorization by language) or visualizations of
interesting data properties (e.g. growth rate, events rate). The
full source code and instructions on how to download and
use the mirrored data can be obtained at https://github.com/
gousiosg/github-mirror.
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