
Tools and Techniques for Analyzing Product and Process
Data

Diomidis Spinellis
Department Management Science and Technology

Athens University of Economics and Business
Greece

email: dds@aueb.gr

Abstract

The analysis of data from software products and their development process is tempting,
but often non-trivial. A flexible, extensible, scalable, and efficient way for performing
this analysis is through the use of line-oriented textual data streams, which are the
lowest useful common denominator for many software analysis tasks. Under this tech-
nique Unix tool-chest programs are combined into a pipeline that forms the pattern:
fetching, selecting, processing, and summarizing. Product artefacts that can be han-
dled in this way include source code (using heuristics, lexical analysis, or full-blown
parsing and semantic analysis) as well as compiled code, which spans assembly code,
machine code, byte code, and libraries. On the process front, data that can be analyzed
include configuration management metadata, time series snapshots, and checked out
repositories. The resulting data can then be visualized as graphs, diagrams, charts, and
maps.

Keywords: repository mining, source code analysis, binary code analysis,
visualization, Unix toolkit

1. Introduction

The analysis of data from software products and their development process [21]
is tempting, but often non-trivial. It is tempting, because the software development

Diomidis Spinellis. Tools and techniques for analyzing product and process data. In Tim Menzies,
Christian Bird, and Thomas Zimmermann, editors, The Art and Science of Analyzing Software Data, pages
161–212. Morgan-Kaufmann, 2015. DOI: 10.1016/B978-0-12-411519-4.00007-0

This is the pre-print draft of an accepted and published manuscript. The publication should always be
cited in preference to this draft using the reference in the previous footnote. This material is presented to
ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained
by authors or by other copyright holders. All persons copying this information are expected to adhere to the
terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder. ©2014. This manuscript version is made available
under the CC-BY-NC-ND 4.0 license.

Preprint submitted to Elsevier 29 October 2014

https://doi.org/10.1016/B978-0-12-411519-4.00007-0
http://creativecommons.org/licenses/by-nc-nd/4.0/

process generates ample data that we should be able use in order to optimize it. Un-
fortunately, it is also difficult, because many tasks cannot be readily accomplished,
despite the development of many platforms that collect software data and allow its anal-
ysis. Examples of such platforms and related tools include Hackystat [26], Hipikat [7],
Kenyon [3], Evolizer [12], Sourcerer [35, 43], Tesseract [50], Moose [42], Chur-
rasco [8], and Alitheia Core [16, 18]. The difficulty of using these platforms stems
from a number of reasons. First, the software artifact or the type of analysis that is
required may not be covered by an existing platform. Then, the disparate data sources,
which are the norm when organizations build their development process in an organic
way, may be difficult to combine using the analysis facilities provided by integrated de-
velopment environments or platforms. Furthermore, the analysis to be performed may
be highly specialized, involving an organization’s domain-specific scenario or a novel
research question. Finally, owing to the ease with which software process records data,
the volume of the data to be examined can be enormous, making it difficult to scale
some existing tools to handle real-world data.

Line-oriented textual data streams are the lowest useful common denominator for
many software analysis tasks. Often, it is effective to combine Unix tool-chest pro-
grams [60] into a pipeline that forms the following pattern: fetching, selecting, pro-
cessing, and summarizing. We examine this approach in Section 2, which builds on a
previously published column [56].

In other cases scripting languages, such as Python, Ruby, and Perl, can also be
remarkably effective. For research purposes, also worth looking at are platforms and
projects that gather and analyze data from open source software repositories. These
include FLOSSmole [24], Flossmetrics [22], Sourcerer, Alitheia Core, and GHTor-
rent [15], with FLOSSmole seeing the widest adoption outside the research team that
produced it [41].

Many useful source code analysis tasks do not require implementing a full lexical
analysis and parser, but can be performed using simple heuristics implemented through
regular expressions [10]. In other cases, piggy-backing the analysis onto existing com-
piler front-ends can be just as effective (Section 3). Another useful technique involves
processing compiled code. Object file symbols and Java byte code are two particularly
rich sources of accurate data—see Section 4.

The best viewpoint into the software development process comes through data ob-
tained from its configuration management (version control) system. This provides in-
formation regarding developers, progress, productivity, working hours, teamwork, and
many other attributes. Three powerful analysis methods involve the processing of snap-
shots in a time series, revision logs, and the so-called blame listings. We examine these
and more in Section 5.

Numerous tools can aid the exploratory data analysis and visualization. Notable
ones include the GraphViz graph drawing tools [13], the GMT toolset for map draw-
ing [68], the gnuplot plotting program, the R Project for statistical computing [47], and
Python’s diverse visualization libraries. Automating the publication of analyzed results
can increase the researcher’s productivity and aid the reproducibility of the results. We
will see some examples of visualization tools in Section 6, which also loosely based on
a previously published column [56].

2

2. A rational analysis pipeline

Line-oriented textual data streams are the lowest useful common denominator for
a lot of data that passes through our hands. Such streams can represent program source
code, feature requests, version control history, file lists, symbol tables, archive con-
tents, error messages, profiling data, and so on. For many routine, everyday tasks, we
might be tempted to process the data using a Swiss army knife scripting language, such
as Perl, Python, or Ruby. However, to do that we often need to write a small, self-
contained program and save it into a file. By that point we may have lost interest in the
task, and end-up doing the work manually, if at all. Often, a more effective approach is
to combine programs of the Unix toolchest into a short and sweet pipeline that we can
run from our shell’s command prompt. With the modern shell command-line editing
facilities we can build our command bit by bit, until it molds into exactly the form that
suits us. Nowadays, the original Unix tools are available on many different systems,
such as GNU/Linux, Mac OS X, and Microsoft Windows (through Cygwin),1 so there
is no reason why we should not add this approach to our arsenal. Documentation for
these tools is always available, either through the man command, or, often, by invoking
the command with the -help option.

Many analysis one-liners that we will build around the Unix tools follow a pattern
whose parts we will examine in the following sections. It that goes roughly like this:
fetching (Section 2.1), selecting (Section 2.2), processing (Section 2.3), and summa-
rizing (Section 2.4). We will also need to apply some plumbing to join these parts into
a whole (Section 2.5).

2.1. Getting the data

In many cases our data will be text (for instance source code) that we can directly
feed to the standard input of a tool. If this is not the case, we need to adapt our data.
If we are dealing with object files or executable programs, we will have to use a tool
such as nm (Unix), dumpbin (Windows), or javap (Java) to dig into them. We examine
these approaches in sections 4.2 and 4.4. If we are working with files grouped into
an archive, then a command such as tar, jar, or ar will list the archive’s contents. In
addition, the ldd command will print shared library dependencies associated with Unix
executables, object files, and libraries. If our data comes from a (potentially large)
collection of files stored on locally accessible storage find can locate those that interest
us. Here is how we would use the find command to list the (header) files residing in the
directory /usr/include.2

find / usr / include −type f
/usr/include/pty.h
/usr/include/time.h
/usr/include/printf.h
/usr/include/arpa/nameser_compat.h
/usr/include/arpa/telnet.h

1http://www.cygwin.com/
2The text in the Roman font denotes the commands we would write at the Unix shell command-line

prompt, (often ending in $), while the text in typewriter font is part of the command’s output.

3

http://www.cygwin.com/

/usr/include/arpa/inet.h
[...]

On the other hand, to get our data over the web, we can use wget or curl (see Sec-
tion 5.1). We can also use dd (and the special file /dev/zero), yes or jot to generate
artificial data, perhaps for running a quick test or a benchmark. Finally, if we want to
process a compiler’s list of error messages, we will want to redirect its standard error
to its standard output; the incantation 2>&1 will do this trick.

There are many other cases we have not covered here: relational databases, version
control systems (see Section 5), mailing lists, issue management systems, telemetry
data, and so on. A software system’s issue management system (bugs) database can
provide insights regarding a product’s maturity and the adequacy of the resources de-
voted to it. Issues are often coupled with software changes allowing even more detailed
analyses to be performed. A dynamic view of a system’s operation can be obtained by
analyzing software telemetry data. This can include precise user interaction metrics,
crash dump reports [29], and server logs. Always keep in mind that we are unlikely
to be the first one who needs the application’s data converted into a textual format;
therefore someone has probably already written a tool for that job. For example, the
Outwit tool suite [51]3 can convert into a text stream data coming from the Windows
clipboard, an ODBC source, the event log, or the Windows registry.

2.2. Selection
Given the generality of the textual data format, in most cases we will have on our

hands more data than what we require. We might want to process only some parts
of each row, or only a subset of the rows. To select a specific column from a line
consisting of elements separated by white space or another field delimiter, we can use
awk with a single print $n command. If our fields are of fixed width, then we can
separate them using cut. And, if our lines are not neatly separated into fields, we can
often write a regular expression for a sed substitute command to isolate the element we
want.

The workhorse for obtaining a subset of the rows is grep. We can specify a regular
expression to get only the rows that match it, and add the --invert-match4 flag to
filter out rows we do not want to process.

Here is how we could use grep to list lines in the FreeBSD kernel source code file
vfs_subr.c containing the XXX sequence, which is commonly used to flag ques-
tionable code. The first part of the fetch-selection pipeline uses curl to fetch the cor-
responding file from the FreeBSD repository. The backslash at the end of the line
indicates that the line is continued on the one below, containing the URL where the file
resides. The | (pipeline) symbol specifies that the output of curl (the vfs_subr.c
file’s contents) will be sent for further processing to the command following it, which
is grep.

curl −−silent \

3http://www.spinellis.gr/sw/outwit
4In the interest of readability, the example use the GNU non-standard long form of the command flags.

4

http://www.spinellis.gr/sw/outwit

https :// svnweb.freebsd .org/base/head/sys/kern/ vfs_subr .c?view=co |
grep XXX
* XXX desiredvnodes is historical cruft and should not exist.

* XXX We could save a lock/unlock if this was only

* Wait for I/O to complete. XXX needs cleaning up. The vnode can
if (bp->b_bufobj != bo) { /* XXX: necessary ? */

* XXX Since there are no node locks for NFS, I
vp = bp->b_vp; /* XXX */
vp = (*bo)->__bo_vnode; /* XXX */

/* XXX audit: privilege used */
/* XXX - correct order? */
[...]

We can use the grep flags --files-with-matches and --files-without--
match to obtain only the names of files that contain (or do not contain) a specific pat-
tern. We can fgrep with the --file flag if the elements we are looking for are fixed
strings stored in a file (perhaps generated in a previous processing step). If our selec-
tion criteria are more complex, we can often express them in an awk pattern expression.
Many times we will find ourselves combining a number of these approaches to obtain
the result that we want. For example, we might use grep to get the lines that interest us,
grep -invert-match to filter-out some noise from our sample, and finally awk to
select a specific field from each line.

Many examples in this chapter use awk for some of their processing steps. In
general, awk works by applying a recipe we give it as an argument on each line of
its input. This recipe consists of patterns and actions; actions without a pattern apply
to all input lines, and a pattern without an action will print the corresponding line.
A pattern can be a /-delimited regular expression or an arbitrary boolean expression.
An action consists of commands enclosed in braces. Lines are automatically split into
space-separated fields. (The -F option can be used to specify arbitrary field delimiters.)
These fields are then available as variables named $n. For example, the following shell
command will print the names of header files included by the C files in the current
directory.

awk ’/# include / { print $2}’ *.c

2.3. Processing

Data processing frequently involves sorting our lines on a specific field. The sort
command supports tens of options for specifying the sort keys, their type, and the
output order. Having our results sorted we then often want to count how many instances
of each element we have. The uniq command with the -count option, will do the job
here; often we will post-process the result with another instance of sort, this time with
the --numeric flag specifying a numerical order, to find out which elements appear
most frequently. In other cases we might want to compare results between different
runs. We can use diff if the two runs generate results that should be the similar (perhaps
we are comparing two versions of the file), or comm if we want to compare two sorted
lists. Through comm we can perform set intersection and difference operations. To
piece together results coming from unrelated processing steps based on a key, we can

5

first sort them and then apply the join command on the two lists. We can handle more
complex tasks using, again awk.

Here are one-by-one the steps of how to build a pipeline that generates a list of
header files ordered by the number of times they are included. First, use grep to obtain
a list of include directives.

grep −−no−filename ’^#include’ *.c
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/exec.h>
#include <sys/imgact.h>
#include <sys/imgact_aout.h>
#include <sys/kernel.h>
#include <sys/lock.h>
[...]

Then, use awk to get from each line the included file name, which is the second field.
While at it, we can replace the original grep with an awk selection pattern.

awk ’/^#include / { print $2}’ *.c
<sys/cdefs.h>
<sys/param.h>
<sys/exec.h>
<sys/imgact.h>
<sys/imgact_aout.h>
<sys/kernel.h>
[...]

Our next step is to sort the file names, in order to bring the same ones together, so that
the can be counted with uniq.

awk ’/^#include / { print $2}’ *.c |
sort
"clock_if.h"
"cpufreq_if.h"
"linker_if.h"
"linker_if.h"
"linker_if.h"
"opt_adaptive_lockmgrs.h"
"opt_adaptive_mutexes.h"
"opt_alq.h"
[...]

We then use uniq to count same consecutive lines (file names).

awk ’/^#include / { print $2}’ *.c |
sort |
uniq −−count

1 "clock_if.h"
1 "cpufreq_if.h"
3 "linker_if.h"
1 "opt_adaptive_lockmgrs.h"
1 "opt_adaptive_mutexes.h"
1 "opt_alq.h"

6

1 "opt_bus.h"
30 "opt_compat.h"
1 "opt_config.h"
34 "opt_ddb.h"

[...]

The final step involves sorting the output again, this time in reverse numerical order,
in order to obtain a list of header file names in a descending order according to the
number of times they occurred in the source code.

awk ’/^#include / { print $2}’ *.c |
sort |
uniq −−count |
sort −−reverse −−numeric
162 <sys/cdefs.h>
161 <sys/param.h>
157 <sys/systm.h>
137 <sys/kernel.h>
116 <sys/proc.h>
114 <sys/lock.h>
106 <sys/mutex.h>
94 <sys/sysctl.h>

[...]

2.4. Summarizing

In many cases the processed data is too voluminous to be of use. For example,
we might not care which symbols are defined with the wrong visibility in a program,
but we might want to know how many there are. Surprisingly, many problems involve
simply counting the output of the processing step using the humble wc (word count)
command and its --lines flag. Here is again a preceding example, this time counting
the number of lines containing the characters XXX.

curl −−silent \
https :// svnweb.freebsd .org/base/head/sys/kern/ vfs_subr .c?view=co |
grep XXX |
wc −−lines

20

If we want to know the top or bottom 10 elements of our result list, then we can
pass our list through head or tail. To format a long list of words into a more manage-
able block that we can then paste in a document, we can use fmt (perhaps run after
a sed substitution command tacks a comma after each element). Also, for debugging
purposes we might initially pipe the result of intermediate stages through more or less,
to examine it in detail. As usual, we can use awk when these approaches do not suit
us; a typical task involves summing-up a specific field with a command like sum +=
$3. In other cases, we might use awk’s associative arrays to sum diverse elements.

7

2.5. Plumbing

All the wonderful building blocks we have described are useless without some way
to glue them together. For this we will use the Bourne shell’s facilities. First and
foremost comes the pipeline (|), which allows us to send the output of one processing
step as input to the next one, as we saw in the preceding examples. We can also
redirect output into a file; this is done by ending our command with the >file-name
construct. In other cases we might want to execute the same command with many
different arguments. For this we will pass the arguments as input to xargs. A typical
pattern involves obtaining a list of files using find, and processing them using xargs.
Commands that can only handle a single argument can be run by xargs if we specify
the --max-args=1 flag. If our processing is more complex, we can always pipe the
arguments into a while read loop. (Amazingly, the Bourne shell allows us to pipe
data into and from all its control structures). When everything else fails, we can use a
couple of intermediate files to juggle our data.

Note that by default the Unix shell will use spaces to separate command line ar-
guments. This can cause problems when we process file names that contain spaces in
them. Avoid this by enclosing variables that represent a file name in double quotes,
as in the following (contrived) example that will count the number of lines in the Java
files residing in the directories under org/eclipse.

find org/ eclipse −type f −name *.java −print |
while read f
do

cat "$f" # File name in quotes to protect spaces
done | wc −−lines

When using find with xargs, which is more efficient than the loop in the preceding
example, we can avoid the problem of embedded spaces by using the respective ar-
guments -print0 and --null. These direct the two commands to have file names
separated with a null character, instead of a space. Thus, the preceding example would
be written as

find org/ eclipse −type f −name *.java −print0 |
xargs −−null cat |
wc −−lines

3. Source code analysis

Source code can be analyzed with various levels of accuracy, precision, and detail.
The analysis spectrum spans heuristics, lexical analysis, parsing, semantic analysis,
and static analysis.

3.1. Heuristics

Heuristics allow us to easily obtain rough-and-ready metrics from the code. The
main advantage of heuristics in source code analysis is that they are easy, often trivial,
to implement. They can therefore often be used as a quick way to test a hypothesis. In

8

most cases the use of heuristics entails the use of regular expressions and corresponding
tools, such as the family of the Unix grep programs, to obtain measures that are useful,
but not 100% accurate. For instance, the following command will display the number
of top-level classes defined in a set of Java files.

grep −−count ^class *.java

The heuristic employed here is based on the assumption that the word class appears
in the beginning of a line if and only if it is used to define a top-level class. Similarly,
the number of subclasses defined in a set of files can be found through the following
command.

fgrep −−count −−word−regexp extends *.java

Again, the preceding command assumes that the word extends is only used to refer
to a subclass’s base class. For example, the count can be set off by the word extends
appearing in strings or comments. Finally, if the files were located in various folders in
a directory tree, we could use the grep’s --recursive flag, instructing it to traverse
the directory tree starting from the current directory (denoted by a dot). An invocation
of awk can then be used to sum the counts (the second field of the colon-separated line.

grep −−recursive −−count ^class . |
awk −F: ’{s += $2} END {print s}’

The preceding command assumes that the keyword class always appears at the be-
ginning of a line, and that no other files that might contain lines beginning with the
word class are located within the directory hierarchy.

3.2. Lexical analysis

When more accuracy is required than what a heuristic can provide, or when the
analysis cannot be easily expressed through a heuristic, then flow-blown lexical anal-
ysis has to be performed. This allows us to identify reserved words, identifiers, con-
stants, string literals, and rudimentary properties of the code structure. The options
here include expressing the lexical analyzer as a state machine or creating code with a
lexical analyzer generator.

3.2.1. State machines
A hand-crafted state machine can be used for recognizing strings and comments,

taking into account a language’s escaping rules. As an example, the following states
can be used for recognizing various elements of C++ source code.

enum e_cfile_state {
s_normal,
s_saw_slash , // After a / character
s_saw_str_backslash , // After a \ character in a string
s_saw_chr_backslash, // After a \ character in a character
s_cpp_comment, // Inside C++ comment
s_block_comment, // Inside C block comment
s_block_star , // Found a * in a block comment

9

s_string , // Inside a string
s_char , // Inside a character

};

Given the preceding definition, a state machine that processes single characters
counting the number of characters appearing within character strings can be expressed
as follows.

static void
process (char c)
{

static enum e_cfile_state cstate = s_normal;

switch (cstate) {
case s_normal:

if (c == ’ / ’)
cstate = s_saw_slash;

else if (c == ’ \’ ’)
cstate = s_char ;

else if (c == ’"’) {
cstate = s_string ;
n_string ++;

}
break;

case s_char :
if (c == ’ \’ ’)

cstate = s_normal;
else if (c == ’ \\ ’)

cstate = s_saw_chr_backslash;
break;

case s_string :
if (c == ’"’)

cstate = s_normal;
else if (c == ’ \\ ’)

cstate = s_saw_str_backslash ;
break;

case s_saw_chr_backslash:
cstate = s_char ;
break;

case s_saw_str_backslash :
cstate = s_string ;
break;

case s_saw_slash: // After a / character
if (c == ’ / ’)

cstate = s_cpp_comment;
else if (c == ’*’)

cstate = s_block_comment;

10

else
cstate = s_normal;

break;
case s_cpp_comment: // Inside a C++ comment

if (c == ’ \n’)
cstate = s_normal;

break;
case s_block_comment: // Inside a C block comment

if (c == ’*’)
cstate = s_block_star ;

break;
case s_block_star : // Found a * in a block comment

if (c == ’ / ’)
cstate = s_normal;

else if (c != ’*’)
cstate = s_block_comment;

break;
}

}

Given that the preceding code has a precise picture of what type of lexical elements
it processes, it can be easily extended to count more complex elements, such as the
number or nesting level of blocks.

The driver for the process function could be a simple filter-style program that
will report the number of strings contained in the code provided in its standard input.

#include <stdio .h>

static int n_string ;
static void process (char c);

int
main(int argc , char *argv [])
{

int c;

while ((c = getchar ()) != EOF)
process (c);

printf ("%d\n", n_string);
return 0;

}

Running the driver with its source code as input, will report 1 (one string found) on its
standard output.

count <count.c
1

11

3.2.2. Lexical analyzer generator
For heavy lifting a lexical analyzer generator [34], such as lex or its modern open-

source incarnation flex, can be used to identify efficiently and accurately all of a lan-
guage’s tokens. The following code excerpt can be fed to the lex generator to create
a self-standing program that will count the number of times each C lexical token has
appeared in its standard input.

LET [a−zA−Z_]
DIG [0−9]

%{
int n_auto, n_break, n_case, n_char, n_const ;
int n_volatile , n_while, n_identifier ;
// [...]

%}

%%
"auto" { n_auto++; }
"break" { n_break++; }
"case" { n_case++; }
"char" { n_char++; }
"const" { n_const++; }
// [...]
"while" { n_while; }

{LET}({LET}|{DIG})* { n_identifier ++; }

">>=" { n_right_shift_assign ++; }
"<<=" { n_left_shift_assign ++; }
// [...]
">>" { n_right_shift ++; }
"<<" { n_left_shift ++; }
// [...]
"<=" { n_less_than++; }
">=" { n_greater_than ++; }
"==" { n_compare++; }
// [...]
"=" { n_assign++; }
. { /* ignore other characters */ }

%%

yywrap() { return (1); }

main()

12

{
while (yylex ())

;
printf ("auto %d\n", n_auto);
printf ("break %d\n", n_break);
// [...]

}

The lexical analyzer specification begins with the definition of regular expressions for
C letters (LET) and digits (DIG). Then come the C definitions of the counter variables,
which are enclosed in the %{ %} block. The analyzer’s main body, which starts after
the %% line, consists of regular expressions on the left hand side, followed by C code
in braces on the right hand side. The C code is executed when the program’s input
matches the corresponding regular expression. The lexical analysis specification can
be easily modified to handle other languages and types of input. Note that because
the specified regular expressions are matched in the order specified, longer elements
and more specific elements must be specified before the corresponding shorter or more
general ones. This can be clearly seen in the presented example in the handling of
identifiers and operators.

The C code after the second %% line contains a loop to iterate over all input tokens,
and statements to print the collected figures. This allows the generated code to be
compiled and run as a single program. The program assumes that the code it reads has
already been preprocessed to handle preprocessing commands and comments. This can
be easily done by passing the source code through the C preprocessor, cpp.

3.3. Parsing and semantic analysis

Parsing and semantic analysis [1] is required when we want to extract more so-
phisticated measures from the code, involving, for instance, the scoping of identifiers,
the handling of exceptions, and class hierarchies. Most modern languages are large
complex beasts, and therefore this form of processing is not for the faint-hearted. The
effort involved can easily require writing tens of thousands lines of code. Therefore,
if this level of analysis is required it is best to adapt the code of an existing compiler.
Compilers for most languages are available as open source software, and can therefore
can be modified to perform the requisite analysis.

An interesting case is the LLVM platform [33] and in particular its Clang font-end,
which can be used as a library to parse and analyze C-like languages, such as C, C++,
and Objective C. For instance, we can build an analyzer that will print a C program’s
global variable declarations in about 100 lines of C++ code.5

3.4. Third party tools

A final option to analyze source code is to piggy-back third party tools that analyze
code. Here are some tools and ideas on how to use them.

5https://github.com/loarabia/Clang-tutorial/blob/master/CItutorial6.
cpp

13

https://github.com/loarabia/Clang-tutorial/blob/master/CItutorial6.cpp
https://github.com/loarabia/Clang-tutorial/blob/master/CItutorial6.cpp

Figure 1: CScout-derived function metrics for the awk source code.

14

The CScout program is a source code analyzer and refactoring browser for collec-
tions of C programs [59]. It can process workspaces of multiple projects (think of a
project as a collection of C source files that are linked together) mapping the com-
plexity introduced by the C preprocessor back into the original C source code files.
CScout takes advantage of modern hardware (fast processors and large memory ca-
pacities) to analyze C source code beyond the level of detail and accuracy provided
by current compilers, linkers, and other source code analyzers. The analysis CScout
performs takes into account the identifier scopes introduced by the C preprocessor and
the C language proper scopes and namespaces. After the source code analysis CScout
can process sophisticated queries on identifiers, files, and functions, locate unused or
wrongly-scoped identifiers, and compute many metrics related to files, functions, and
identifiers. Figure 1 illustrates the metrics collected for functions.

CCFinderX6 is a tool that detects duplicated code fragments in source code written
in many modern programming languages. The tool is a redesign of CCFinder [28],
which has been used for research published in tens of research papers. The command
line version of the tool will print its results as a text file.

The output file format of CCFinderX is simple, but not trivial. Its first section lists
for each file that has been analyzed, its numerical identifier, its path, and the number of
tokens it contains. Here is an excerpt corresponding to the Linux kernel.

source_files {
...
19 arch/i386/kernel/bootflag.c 314
20 arch/i386/kernel/cpuid.c 841
21 arch/i386/kernel/i8237.c 147
22 arch/i386/kernel/microcode.c 1673
23 arch/i386/kernel/msr.c 1287
24 arch/i386/kernel/quirks.c 154
25 arch/i386/kernel/topology.c 133
26 arch/i386/mm/hugetlbpage.c 1084
27 arch/i386/oprofile/backtrace.c 310
28 arch/i386/oprofile/init.c 67
...
}

Then follows a list of detected code clones. Each line contains the clone’s identifier,
followed by a pair of source code clone specifications. Each one has the file identifier,
the beginning token, and the end token of the cloned code.

In the following example we see code cloned within the same file (microcode.c
— clone 7329), as well as code cloned between different files (e.g. cpuid.c and
msr.c — clone 6981).

clone_pairs {
...
6981 20.785-840 23.1231-1286
10632 20.625-690 934.1488-1553
7329 22.660-725 22.884-949
...
}

6http://www.ccfinder.net/

15

http://www.ccfinder.net/

The generated file can be further analyzed to derive additional measures. As an ex-
ample, the following Perl program when given as input the base name of a CCFinderX
result file, will print the percentage of cloned tokens in it. A high percentage of cloning
can often lead to higher maintenance costs, because fixes and enhancements need to be
carefully duplicated in multiple places.

open(IN, "ccfx .exe P $ARGV[0].ccfxd|") || die ;
while (<IN>) {

chop;
if (/^ source_files / .. /^\}/) {

Initialize file map as non−cloned tokens
($id , $name, $tok) = split ;
$file [$id][$tok − 1] = 0 if ($tok > 0);
$nfile ++;

} elsif (/^ clone_pairs / .. /^\}/) {
Assign clone details to corresponding files
($id , $c1, $c2) = split ;
mapfile ($c1);
mapfile ($c1);

}
}

Given a detected clone , mark the corresponding tokens
in the file map as cloned
sub mapfile {

my($clone) = @_;
($fid , $start , $end) = ($clone =~ m/^(\d +)\.(\ d+)\−(\d+)$ /);
for ($i = $start ; $i <= $end; $i++) {

$file [$fid][$i] = 1;
}

}

Sum up the number of tokens and clones
for ($fid = 0 ; $fid <= $# file ; $fid++) {

for ($tokid = 0; $tokid <= $#{ $file [$fid]}; $tokid++) {
$ntok++;
$nclone += $file [$fid][$tokid];

}
}

print "$ARGV[0] nfiles=$nfile ntok=$ntok nclone=$nclone " ,
$nclone / $ntok * 100, " \n";

General-purpose tools can often be just as helpful as the specialized ones we have
seen. If we want to perform some processing on comments in C, C++, or Objective-C
code, then the GCC version of the C preprocessor can help us. Consider a case where
we want to count the number of comment characters in a source code file. Preprocess-

16

ing the file with the -fpreprocessed flag will remove the comments, but won’t
do any other expansion. Thus subtracting the number of characters in the file with the
comments removed from the original number will give us the number of comment char-
acters. The following bash code excerpt will print the number of comment characters
in file.c.

expr $(wc −−chars <prog.c) − $(cpp −fpreprocessed prog.c | wc −−chars)

We can also pass the -H flag to the C preprocessor in order to obtain a list of
included header files. This output can, for instance, then be used to map code reuse
patterns. Here is some representative output. (The dots at the beginning of each line
indicate nested include levels, and can be used to study a project’s module layering.)

. /usr/include/stdlib.h

.. /usr/include/machine/ieeefp.h

.. /usr/include/_ansi.h

... /usr/include/newlib.h

... /usr/include/sys/config.h

.... /usr/include/machine/ieeefp.h

.... /usr/include/sys/features.h

.... /usr/include/cygwin/config.h

.. /usr/lib/gcc/i686-pc-cygwin/4.8.2/include/stddef.h

.. /usr/include/sys/reent.h

... /usr/include/_ansi.h

... /usr/lib/gcc/i686-pc-cygwin/4.8.2/include/stddef.h

... /usr/include/sys/_types.h

.... /usr/include/machine/_types.h

..... /usr/include/machine/_default_types.h

.... /usr/include/sys/lock.h

.... /usr/lib/gcc/i686-pc-cygwin/4.8.2/include/stddef.h

Another useful family of general-purpose tools that we can repurpose for source
code analysis are documentation generators, such as Doxygen and Javadoc. These
parse source code and documentation comments to create code reference documents.
The simplest way to use these tools is to analyze the resultant HTML text. The text’s
structure is simpler than the corresponding code, and, in addition, it may contain data
that would be difficult to get from the original code. The trick in this case is to look at
the generated HTML code (right-click – This Frame – View Source in many browsers)
to determine the exact pattern to search for. For example, the following shell code
will go through the Java development kit HTML documentation to count the number of
methods that are declared to implement some interface (7752 methods in total).

grep −−recursive −−count ’Specified by:’ . |
awk −F: ’{s += $2} END {print s}’

If the generated documentation does not contain the information we want, then we
can extend Javadoc through custom so-called doclets. These have a method that is
called after Javadoc has processed the source code. The method gets as an argument a
document tree of the code’s element, which can then be easily processed to extract and
print the results we want. As an example the UMLGraph system uses this approach to
create UML diagrams out of Java code [53].

17

Regarding the analysis of the code’s adherence to some style conventions, a use-
ful approach is to apply a source code formatter, such as indent, on the source code,
and then compare the original source code with the formatter’s output. The number
of differences found is an indication of how closely the code follows the code style
conventions: a large number of differences indicates a poor adherence to the style con-
ventions. A problem of this approach is that for some languages, such as C and C++,
there are many acceptable style conventions. In these cases, either the code style tool
has to be configured according to the documented code conventions, or the code’s con-
ventions have to be deduced from the actual code [58].

The following shell script, will deduce the code’s conventions by perturbing the (far
too many) settings passed to indent, and keeping each time the setting that minimizes
the number of lines that do not match the specified style. After it is executed with
FILES set to a (hopefully representative) set of files on which to operate, it will set the
variable INDENT_OPT to the indent options that match the code’s style more closely.

Return number of style violations when running indent on
$FILES with $INDENT_OPT options
style_violations ()

{
for f in $FILES
do

indent −st $INDENT_OPT $1 $f |
diff $f −

done |
grep ’^<’ |
wc −−lines

}

VIOLATIONS=‘style_violations‘

Determine values for numerical options
for TRY_OPT in i ts bli c cbi cd ci cli cp d di ip l lc pi
do

BEST=$VIOLATIONS
Find best value for $TRY_OPT
for n in 0 1 2 3 4 5 6 7 8
do

NEW=‘style_violations −TRY_OPTn‘
if [$NEW −lt $BEST]
then

BNUM=$n
BEST=$NEW

fi
done
if [$BEST −lt $VIOLATIONS]
then

18

INDENT_OPT="$INDENT_OPT −$TRY_OPT$BNUM"
VIOLATIONS=$BEST

fi
done

Determine Boolean options
for TRY_OPT in bad bap bbb bbo bc bl bls br brs bs cdb cdw ce cs bfda \

bfde fc1 fca hnl lp lps nbad nbap nbbo nbc nbfda ncdb ncdw nce \
ncs nfc1 nfca nhnl nip nlp npcs nprs npsl nsaf nsai nsaw nsc nsob \
nss nut pcs prs psl saf sai saw sc sob ss ut

do
NEW=‘style_violations −$TRY_OPT‘
if [$NEW −lt $VIOLATIONS]
then

INDENT_OPT="$INDENT_OPT −$TRY_OPT"
VIOLATIONS=$NEW

fi
done

Running indent on the Windows Research Kernel without any options results in
389,547 violations found among 583,407 lines. After determining the appropriate in-
dent options with the preceding script (-i4 -ts0 -bli0 -c0 -cd0 -di0 -bad
-bbb -br -brs -bfda -bfde -nbbo -ncs) the number of lines found to be vi-
olating the style conventions shrinks to 118,173. This type of analysis can pinpoint,
for example, developers and teams that require additional mentoring or training to help
them adhere to an organization’s code style standards. An increase of these figures over
time can be an indicator of stress in an organization’s development processes.

4. Compiled code analysis

Analyzing the artifacts of compilation (assembly language code, object files, and
libraries) has the obvious advantage that the compiler performs all the heavy lifting
required for the analysis. Thus, the analysis can be efficiently performed and its results
will accurately match the actual semantics of the language. In addition, this analysis
can be performed on proprietary systems, repositories of binary code, such as those
of the Maven ecosystem [39], and also on mixed code bases where an application’s
source code is shipped together with library binaries. The following sections list tools
and corresponding examples.

4.1. Assembly language

Most compilers provide a switch that directs them to produce assembly language
source code, rather than binary object code. The corresponding flag for most Unix
compilers is -S. Assembly language files can be easily processed using text tools, such
as grep, sed, and awk. As an example, we will see a script that counts the code’s basic
blocks.

19

A basic block is a portion of code with exactly one entry and exit point. It can be
valuable to analyze code in terms of basic blocks, for it allows to measure things like
code complexity and test coverage requirements.

We can obtain information regarding the basic blocks of GCC-compiled code by
passing to the compiler the --coverage flag in conjunction with the -s flag to pro-
duce assembly language output. The generated code at the entry or exit of a basic block
looks like the following excerpt (without the comments).

movl ___gcov0. stat_files +56, %eax ; Load low part of 64−bit value
movl ___gcov0. stat_files +60, %edx ; Load hight part of 64−bit value
addl $1, %eax ; Increment low part
adcl $0, %edx ; Add carry to high part
movl %eax, ___gcov0. stat_files +56 ; Store low part
movl %edx, ___gcov0. stat_files +60 ; Store high part

From the above code it is easy to see that the counter associated with each basic block
occupies 8 data bytes. The compiler stores the counters in common data blocks al-
located on a per-function basis, like the ones in the following example obtained by
analyzing a small C program.7

. lcomm ___gcov0.execute_schedule,400,32

. lcomm ___gcov0.prunefile,48,32

. lcomm ___gcov0.bytime,8,8

. lcomm ___gcov0.print_schedule,24,8

. lcomm ___gcov0.create_schedule,184,32

. lcomm ___gcov0.parse_dates,80,32

. lcomm ___gcov0. stat_files ,72,32

. lcomm ___gcov0.xstrdup,16,8

. lcomm ___gcov0.xmalloc,24,8

. lcomm ___gcov0.D,8,8

. lcomm ___gcov0.main,816,32

. lcomm ___gcov0.error_pmsg,40,32

. lcomm ___gcov0.error_msg,24,8

. lcomm ___gcov0.usage,24,8

The three arguments to each lcomm pseudo-op are the block’s name, its size, and align-
ment. By dividing the size by 8 we can obtain the number of basic block boundaries
associated with each function. Thus we can process a set of assembly language files
produced by compiling code with the --coverage option, and then use the follow-
ing script to obtain a list of functions ordered by the number of basic blocks boundaries
embedded in them.

Compile code with coverage analysis
gcc −S −−coverage −o /dev/stdout file .c |

Print the blocks where coverage data is stored

7http://www.spinellis.gr/sw/unix/fileprune/

20

http://www.spinellis.gr/sw/unix/fileprune/

sed −−quiet ’ /^\. lcomm ___gcov0/s /[.,]/ /gp’ |

Print name and size of each block
awk ’{print $3, $4 / 8}’ |

Order by ascending block size
sort −−key=2 −−numeric

Here is an example of the script’s output for the preceding program.

D 1
bytime 1
xstrdup 2
error_msg 3
print_schedule 3
usage 3
xmalloc 3
error_pmsg 5
prunefile 6
stat_files 9
parse_dates 10
create_schedule 23
execute_schedule 50
main 102

The number of basic blocks in each function can be used to assess code structure,
modularity, and (together with other metrics) locate potential trouble spots.

4.2. Machine Code
On Unix systems we can analyze object files containing machine code with the

nm program.8 This displays a list of defined and undefined symbols in each object
file passed as an argument [52, pp. 363–364]. Defined symbols are preceded by their
address, and all symbols are preceded by the type of their linkage. The most interesting
symbol types found in user-space programs in a hosted environment are the following.

B Large uninitialized data; typically arrays

C Uninitialized “common” data; typically variables of basic types

D Initialized data

R Read-only symbols (constants and strings)

T Code (known as text)

U Undefined (imported) symbol (function or variable)

Lowercase letter types (e.g. “d” or “t”) correspond to symbols that are defined locally
in a given file (with a static declaration in C/C++ programs).

Here is as an example the output of running nm on a C “hello, world” program.

8A program with similar functionality, named dumpbin, is also distributed with Microsoft’s Visual Studio.

21

00000000 T main
U printf

As a first example of this technique consider the task of finding all symbols that a
(presumably) large C program should have declared as static. Appropriate static
declarations, minimize name space pollution, increase modularity, and can prevent
bugs that might be difficult to locate. Therefore, the number of elements in such a
list could be a metric of a project’s maintainability.

List of all undefined (imported) symbols
nm *.o | awk ’$1 == "U" { print $2}’ >imports

List of all defined globally exported symbols
nm *.o | awk ’NF == 3 && $2 ~ /[A−Z]/ {print $3}’ | sort >exports

List of all symbols that were globally exported but not imported
(−2: don’t show only imports , −3: don’t show common symbols)
comm −2 −3 exports imports

Our second example derives identifier metrics according to their type. The script
we will see can analyze systems whose object files reside in a directory hierarchy, and
therefore uses find to locate all object files. After listing the defined symbols with
nm, it uses awk to tally in an associative array (map) the count and total length of the
identifiers of each identifier category. This allows it in the end to print the average
length and count for each category.

Find object files
find . −name *.o |

List symbols
xargs nm |

awk ’
Tally data for each symbol type
NF == 3 {

len [$2] += length ($3)
count[$2]++

}
END {

Print average length for each type
for (t in len)

printf "%s %4.1f %8d\n", t , len [t] / count[t], count[t]
}’ |

Order by symbol type
sort −−ignore−case

Running the preceding script on a compiled kernel of FreeBSD produces the fol-
lowing results.

22

A 6.0 5
b 13.2 2306
B 16.7 1229
C 10.9 2574
D 19.1 1649
d 23.0 11575
R 13.2 240
r 40.9 8244
T 17.5 12567
t 17.9 15475
V 17.0 1

From these results we can see that in each category there are more local (static) symbols
(identified by a lowercase letter) than global ones (shown with the corresponding up-
percase letter), and that global functions (T) are far more (12567) than global variables
(D: 1649) and arrays (B: 1229). This allows us to reason regarding the encapsulation
mechanisms used in the specific system.

Binary code analysis can go into significantly more depth than the static analysis
techniques we have discussed in other sections. The code sequences can be analyzed
in considerably more detail, while dynamic analysis methods can be used to obtain
information from running programs. Tool support can help in both regards; a recently
published survey of available tools [37] provides a good starting point.

4.3. Dealing with name mangling
Some of the techniques covered in this section work well with code written in older

languages, such as C and Fortran. However, if we try them on code written in relatively
newer ones, such as Ada, C++, and Objective-C, we will get gibberish, as illustrated in
the following example.
_ZL19visit_include_files6FileidMS_KFRKSt3mapIS_10IncDetails
St4lessIS_ESaISt4pairIKS_S1_EEEvEMS1_KFbvEi 53
_ZL9call_pathP12GraphDisplayP4CallS2_b 91
_ZL11cgraph_pageP12GraphDisplay 96
_ZL12version_infob 140

The reason for this is name mangling: a method C++ compilers use to reconcile
linkers that were designed for simpler languages with the requirement of C++ for
type-correct linking across separately compiled files. To achieve this feat the com-
piler adorns each externally visible identifier with characters that specify its precise
type.

We can undo this mangling by passing the resulting text through the c++filt tool,
which ships with GNU binutils. This will decode each identifier according to the cor-
responding rules, and provide the full language-dependent type associated with each
identifier. For instance, the demangled C++ identifiers of the preceding example are
the following.
visit_include_files(Fileid, std::map<Fileid, IncDetails,
std::less<Fileid>, std::allocator<std::pair<Fileid const,
IncDetails> > > const& (Fileid::*)() const, bool
(IncDetails::*)() const, int) 53
call_path(GraphDisplay*, Call*, Call*, bool) 91
cgraph_page(GraphDisplay*) 96
version_info(bool) 140

23

4.4. Byte Code
Programs and libraries associated with the JVM environment are compiled into

portable byte code. This can be readily analyzed to avoid the complexity of analyz-
ing source code. The javap program, which comes with the Java development kit, gets
as an argument the name of a class, and, by default, prints its public, protected, and
package-visible members. For instance, this is the javap output for a “hello, world”
Java program.

Compiled from "Test.java"
class Hello {
Hello();
public static void main(java.lang.String[]);

}

Here is how we can use the output of javap to extract some basic code metrics of
Java programs (in this case the ClassGraph class).

Number of fields and methods in the ClassGraph class
javap org .umlgraph.doclet .ClassGraph |
grep ’^ ’ |
wc −−lines

List of public methods of a given class
javap −public org .umlgraph.doclet .ClassGraph |
sed −−quiet ’

Remove arguments of each method
s /(.*/(/
Remove visibility and return type of each method; print its name
s/^ .* \([^(]*\)(/\1/ p’

The javap program can also disassemble the Java byte codes contained in each class
file. This allows us to perform even more sophisticated processing. The following
script prints virtual method invocations, ordered by the number of times each class
invokes a method.

Disassemble Java byte code for all class files under the current directory
javap −c **/*. class |

Print (class method) pairs
awk ’

Set class name
/^[^].* class / {

Isolate from the line the class name
It is parenthesized in the RE so we can refer to it as \1
class = gensub("^.* class ([^]*) .*", "\\1", "g")

}
Print class and method name
/: invokevirtual / {

print class , $6

24

}’ |

Order same invocations together
sort |

Count number of same invocations
uniq −−count |

Order results by number of same invocations
sort −−numeric−sort −−reverse

Running the above script on the UMLGraph’s compiled method, allows us to determi-
nate that the org.umlgraph.doclet.Options class calls 158 times the method
String.equals. Measures like these can be used to build a dependency graph,
which can then expose refactoring opportunities.

If the output of javap is too low-level for our purpose, another alternative for pro-
cessing Java byte code is the FindBugs program [23]. This allows the development
of plugins that are invoked when specific code patterns are encountered. For instance,
a simple plugin can detect instances of BigDecimal types that are created from a
double value,9 while a more complex one can locate arbitrary errors in method argu-
ments that can be determined at the time of the analysis [62].

4.5. Dynamic linking
Modern systems have their executable programs link dynamically at runtime to the

libraries they require in order to run. This simplifies software updates, reduces the
size on disk of each executable program, and allows the running programs to share
each library’s code in memory [57, p. 281]. Obtaining a list of the dynamic libraries
a program requires, allows us to extract information regarding software dependencies
and reuse.

On Unix systems the ldd program will provide a list of the libraries an executable
program (or an other library) requires in order to run. Here is an example of running
the ldd command on ldd /bin/ls on a Linux system.

ldd / bin / ls
linux-gate.so.1 => (0xb7799000)
libselinux.so.1 => /lib/i386-linux-gnu/libselinux.so.1 (0xb776d000)
librt.so.1 => /lib/i386-linux-gnu/i686/cmov/librt.so.1 (0xb7764000)
libacl.so.1 => /lib/i386-linux-gnu/libacl.so.1 (0xb7759000)
libc.so.6 => /lib/i386-linux-gnu/i686/cmov/libc.so.6 (0xb75f5000)
libdl.so.2 => /lib/i386-linux-gnu/i686/cmov/libdl.so.2 (0xb75f1000)
/lib/ld-linux.so.2 (0xb779a000)
libpthread.so.0 => /lib/i386-linux-gnu/i686/cmov/libpthread.so.0 (0xb75d8000)
libattr.so.1 => /lib/i386-linux-gnu/libattr.so.1 (0xb75d2000)

As usual, we can then process this output with additional tools to generate higher-
level results. As an example, the following pipeline will list the libraries required by all

9http://code.google.com/p/findbugs/wiki/DetectorPluginTutorial

25

http://code.google.com/p/findbugs/wiki/DetectorPluginTutorial

programs in the /usr/bin directory, ordered by the number of programs that depend
on them. The pipeline’s output can be used to study the dependencies between modules
and software reuse.

List dynamic library dependencies , ignoring errors
ldd / usr /bin/* 2>/dev/ null |

Print library name
awk ’/=>/{ print $3}’ |

Bring names together
sort |

Count same names
uniq −−count |

Order by number of occurrences
sort −−reverse −−numeric−sort

These are the first ten lines of the preceding pipeline’s output on a FreeBSD system,

392 /lib/libc.so.7
38 /lib/libz.so.5
38 /lib/libm.so.5
35 /lib/libncurses.so.8
30 /lib/libutil.so.8
30 /lib/libcrypto.so.6
29 /lib/libcrypt.so.5
22 /usr/lib/libstdc++.so.6
22 /usr/lib/libbz2.so.4
22 /lib/libmd.so.5

and these on a Linux system.

587 /lib/i386-linux-gnu/i686/cmov/libc.so.6
208 /lib/i386-linux-gnu/i686/cmov/libdl.so.2
148 /lib/i386-linux-gnu/i686/cmov/libm.so.6
147 /lib/i386-linux-gnu/libz.so.1
118 /lib/i386-linux-gnu/i686/cmov/libpthread.so.0
75 /lib/i386-linux-gnu/libtinfo.so.5
71 /lib/i386-linux-gnu/i686/cmov/librt.so.1
41 /lib/i386-linux-gnu/libselinux.so.1
38 /lib/i386-linux-gnu/libgcc_s.so.1
38 /lib/i386-linux-gnu/i686/cmov/libresolv.so.2

4.6. Libraries

Library files contain compiled object files packed together so that they can be easily
shipped and used as a unit. On Unix systems nm can be used to see the symbols defined
and referenced by each library member (see Section 4.2), while the ar program can be
used to list the files contained in the library. As an example, the following pipeline will
list the C library’s files ordered by their size.

26

Print a verbose table for file libc .a
ar tvf libc .a |

Order numerically by size (the third field)
sort −−reverse −−key=3 −−numeric−sort

Here are the first few lines of the pipeline’s output on a Linux system.

rw-r--r-- 2308942397/2397 981944 Dec 18 01:16 2013 regex.o
rw-r--r-- 2308942397/2397 331712 Dec 18 01:16 2013 malloc.o
rw-r--r-- 2308942397/2397 277648 Dec 18 01:16 2013 getaddrinfo.o
rw-r--r-- 2308942397/2397 222592 Dec 18 01:16 2013 strcasestr-nonascii.o
rw-r--r-- 2308942397/2397 204552 Dec 18 01:16 2013 fnmatch.o
rw-r--r-- 2308942397/2397 196848 Dec 18 01:16 2013 vfwprintf.o

Such a listing can provide insights on a library’s modularity, and modules that could be
refactored into units of a more appropriate size.

The corresponding program for Java archives in jar. Given the name of a Java
.jar file it will list the class files contained in it. The results can then be used by other
programs for further processing.

Consider the task of calculating the Chidamber and Kemerer metrics [6] for a set
of classes. These metrics comprise for a class the following following values:

WMC : Weighted methods per class

DIT : Depth of inheritance tree

NOC : Number of children

CBO : Coupling between object classes

RFC : Response for a class

LCOM : Lack of cohesion in methods

The metrics can be used to assess the design of an object-oriented system and to im-
prove the corresponding process.

The following example will calculate the metrics for the classes contained in the
ant.jar file, and print the results ordered by the weighted methods per class. For the
metrics calculation it uses the ckjm program [54],10 which expects as its input pairs of
files and class names.

Print table of files contained in ant . jar
jar tf ant . jar |

Add "ant . jar " to the beginning of lines ending with . class
and print them, passing the (filename class) list to ckjm
c metrics

10http://www.spinellis.gr/sw/ckjm/

27

http://www.spinellis.gr/sw/ckjm/

sed −−quiet ’ /\. class$ / s /^/ ant . jar /p’ |

Run ckjm, calculating the metrics for the filename class
pairs read from its standard input
java −jar ckjm−1.9.jar 2>/dev/ null |

Order the results numerically by the second field
(Weighted methods per class)
sort −−reverse −−key=2 −−numeric−sort

Here are, as usual, the first few lines of the pipeline’s output.

org.apache.tools.ant.Project 127 1 0 33 299 7533 368 110
org.apache.tools.ant.taskdefs.Javadoc 109 0 0 35 284 5342 8 83
org.apache.tools.ant.taskdefs.Javac 88 0 1 19 168 3534 14 75
org.apache.tools.ant.taskdefs.Zip 78 0 1 44 269 2471 5 36
org.apache.tools.ant.DirectoryScanner 70 1 2 15 169 2029 43 34
org.apache.tools.ant.util.FileUtils 67 1 0 13 172 2181 151 65
org.apache.tools.ant.types.AbstractFileSet 66 0 3 31 137 1527 9 63

The preceding metrics of object-oriented code, can be further processed to flag
classes with values that merit further analysis and justification [57, pp. 341–342], [49],
and to locate opportunities for refactoring. In this case, some of the preceding classes,
which comprise more than 50 classes each, may need refactoring, because they violate
a rule of a thumb stating that elements consisting of more than 30 subelements are
likely to be problematic [36, p. 31].

5. Analysis of configuration management data

Analysis of data obtained from a configuration management system [55, 61], such
as Git [38], Subversion [46], or CVS [19], can provide valuable information regarding
software evolution [11, 66], the engagement of developers [5], defect prediction [63, 9],
distributed development [4, 14], and many other topics [27]. There are two types of
data that can be obtained from a configuration management system.

Metadata are the details associated with each commit: the developer, the date and
time, the commit message, the software branch, and the commit’s scope. In ad-
dition, the commit message, apart from free text, often contains other structured
elements, such as references to bugs in the corresponding database, developer
user names, and other commits.

Snapshots of a project’s source code can be obtained from the repository, reflecting
the project’s state at each point of time where a commit was made. The source
code associated with each snapshot can be further analyzed using the techniques
we saw in Section 3.

28

5.1. Obtaining repository data
Before a repository’s data can be analyzed, it is usually preferable to obtain a local

copy of the repository’s data [40]. Although some repositories allow remote access
to clients, this access is typically provided to serve the needs of software developers,
i.e. an initial download of the project’s source code, followed by regular, but not high-
frequency, synchronization requests and commits. In contrast, a repository’s analysis
might involve many expensive operations, like thousands of checkouts at successive
time points, which can stress the repository server’s network bandwidth, CPU resources,
and administrators. Operations on a local repository copy will not tax the remote server,
and will also speed up significantly the operations run on it.

The techniques used for obtaining repository data depend on the repository type
and the number of repositories that are to be mirrored. Repositories of distributed ver-
sion control systems [44] offer commands that can readily create a copy of a complete
repository from a remote server, namely bzr branch for Bazaar [20], git clone
for Git, and hg clone for Mercurial [45]. Projects using the Subversion or CVS
system for version control, can sometimes be mirrored using the rsync or the svnsync
(for Subversion) command and associated protocol. The following are examples of
commands used to mirror a diverse set of repositories.

Create a copy of the GNU cpio Git repository
git clone git :// git . savannah.gnu.org/ cpio . git

Create a copy of the GNU Chess Subversion repository using rsync
rsync −avHS rsync://svn.savannah.gnu.org/svn/chess / chess . repo/

Create a copy of the Asterisk Bazaar repository
bzr branch lp : asterisk

Create a copy of the Mercurial C Python repository
hg clone http :// hg.python.org/cpython

Using svnsync is more involved; here is an example of the commands used for
mirroring the Subversion repository of the JBOSS application server.

svnadmin create jboss−as
svnsync init file ://‘ pwd‘/jbossas https :// svn. jboss .org/ repos / jboss−as
cd jboss−as
echo ’ #!/ bin /sh’ > hooks/pre−revprop−change
chmod +x hooks/pre−revprop−change
cd ..
svnsync init file ://‘ pwd‘/jboss−as http :// anonsvn. jboss .org/ repos / jbossas
svnsync sync file ://‘ pwd‘/jboss−as

Alternatively, if a friendly administrator has shell-level access to the site hosting
the subversion repository, the repository can be dumped into a file and restored back
from it using the commands svnadmin dump and svnadmin load.

When multiple repositories are hosted on the same server, their mirroring can be
automated by generating cloning commands. These can often be easily created by

29

screen-scrapping the web page that lists the available repositories. As an example
consider the Git repositories hosted on git.gnome.org.

Each project is listed with an HTML line like the following.

<tr><td class=’sublevel-repo’><a title=’archive/gcalctool’
href=’/browse/archive/gcalctool/’>archive/gcalctool
</td><td>Desktop calculator
</td><td></td><td>11 months</td></tr>

The name of the corresponding Git repository can be readily extracted from the
URL. In addition, because the projects are listed in multiple web pages, a loop is
required to iterate over them, specifying the project list’s offset for each page. The
following short script, will download all repositories using the techniques we saw.

List the URLs containing the projects
perl −e ’for ($i = 0; $i < 1500; $i += 650) {

print " https :// git .gnome.org/browse/?ofs=$i\n"}’ |

For each URL
while read url
do

Read the web page
curl "$url " |

Extract the Git repository URL
sed −−quiet ’/ sublevel−repo/s |.* href=’\ ’ ’ /browse /\([^ ’ \ ’ ’]*\) ’ \ ’ ’ .*|\

git :// git .gnome.org /\1| p’ |

Run git clone for the specific repository
xargs −−max−args=1 git clone

done

Over the recent years GitHub has evolved to be an amazingly large repository of
open source projects. Although GitHub offers an API to access the corresponding
project data (see Figure 2), it does not offer a comprehensive catalog of the data stored
in it [17]. Thankfully, large swathes of the data can be obtained as database dump files
in the form of a torrent [15].

5.2. Analyzing metadata
Metadata analysis can easily be performed by running the version control system

command that outputs the revision log. This can then be analyzed using the process
outlined in Section 2.

As examples of metadata, consider the following Git log entry from the Linux
kernel

commit fa389e220254c69ffae0d403eac4146171062d08
Author: Linus Torvalds <torvalds@linux-foundation.org>
Date: Sun Mar 9 19:41:57 2014 -0700

Linux 3.14-rc6

30

git.gnome.org

User

 login : String
 id : int
 name : String
 company : String
 location : String
 email : String
 hireable : Boolean
 bio : String
 public_repos : int
 public_gists : int
 followers : int
 following : int
 created_at : Date

/users/:user/followers

0..*0..*

/users/:user/following

0..* 0..*

Organization

 login : String
 id : int
 url : String
 name : String
 company : String
 location : String
 email : String
 public_repos : int
 public_gists : int
 followers : int
 following : int
 created_at : Date

/users/:user/orgs

0..*

1..*

Repo
(Project)

 url : String
 owner : User
 name : String
 description : String
 language : String
 forks : int
 watchers : int
 size : int
 open_issues : int
 pushed_at : Date
 created_at : Date

/users/:user/repos

0..*

1..*

/orgs/:org/members

1..*

0..*

Team

 id : int
 name : String
 members_count : int
 repos_count : int

/orgs/:org/teams

0..*

1

/orgs/:org/repos

0..*

1

/teams/:id/members

1..*

0..*

/teams/:id/repos

0..*

0..*

PullRequest

 url : String
 number : int
 state : OpenClosed
 title : String
 body : String
 created_at : Date
 updated_at : Date
 closed_at : Date
 merged_at : Date

/repos/:user/:repo/pulls 0..*

1

Milestone

 url : String
 number : int
 state : OpenClosed
 title : String
 description : String
 creator : User
 open_issues : int
 closed_issues : int
 created_at : Date
 due_on : Date

/repos/:user/:repo/milestones

0..*

1

Commit

 comitter_email : String
 comitter_date : Date
 comitter_name : String
 message : String
 author_email : String
 author_date : Date
 author_name : String
 parents_sha : String[]
 sha : String
 author : User
 committer : User
 parents : Commit

/repos/:user/:repo/commits

0..*

1

Issue

 number : int
 state : OpenClosed
 title : String
 body : String
 labels : String[]
 assignee : User
 pull_request : PullRequest
 milestone : Milestone
 comments : int
 created_at : Date
 updated_at : Date
 closed_at : Date

/repos/:user/:repo/issues 1

0..*

IssueComment

 url : String
 body : String
 user : User
 created_at : Date
 updated_at : Date

/repos/:user/:repo/issues/:id/comments

0..*

1

PullRequestComment

 url : String
 id : int
 body : String
 path : String
 commit_id : String
 position : int
 user : User
 created_at : Date
 updated_at : Date

/repos/:user/:repo/pulls/:id/comments

0..*

1

Figure 2: Schema of the data available through GitHub

31

and an older CVS log entry from FreeBSD’s sed program.

revision 1.28
date: 2005/08/04 10:05:11; author: dds; state: Exp; lines: +8 -2
Bug fix: a numeric flag specification in the substitute command would
cause the next substitute flag to be ignored.
While working at it, detect and report overflows.

Reported by: Jingsong Liu
MFC after: 1 week

The following example illustrates how we can obtain the time of the first commit
from various types of repositories.

Git
git rev− list −−date−order −−reverse −−pretty=format:’%ci’ master |
sed −−quiet 2p

Bazaar
bzr log | grep timestamp: | tail −1

Mercurial
hg log | grep ’ date : ’ | tail −1

CVS
cvs log −SN |
sed −−quiet ’s/^ date : \(..........\).*/\1/ p’ |
sort −−unique |
head −1

Some version control systems, such as Git, allow us to specify the format of the
resulting log output. This makes it easy to isolate and process specific items. The
following sequence will print the author names of the ten most prolific contributors
associated with a Git repository, ordered by the number of commits they made.

Print author names
git log −−format=’%an’ |

Order them by author
sort |

Count number of commits for each author
uniq −−count |

Order them by number of commits
sort −−numeric−sort −−reverse |

Print top ten
head −10

32

The result of running the preceding script on the last ten years of the Linux kernel
is the following.

20131 Linus Torvalds
8445 David S. Miller
7692 Andrew Morton
5156 Greg Kroah-Hartman
5116 Mark Brown
4723 Russell King
4584 Takashi Iwai
4385 Al Viro
4220 Ingo Molnar
3276 Tejun Heo

Such lists can be used to gain insights on the division of labour within teams and
developer productivity.

Aggregate results can be readily calculated using awk’s associative arrays. The
following example shows the lines contributed by each developer in a CVS repository.

Print the log
cvs log −SN |

Isolate the author and line count
sed −n ’/^date :/ s /[+;]// gp’ |

Tally lines per author
awk ’{devlines [$5] += $9}

END {for (i in devlines) print i , devlines [i]}’ |

Order entries by descending number of lines
sort −−key=2 −−numeric−sort −−reverse

The first ten lines from the output of the preceding command run on the FreeBSD
kernel are the following.

gallatin 956758
mjacob 853190
sam 749313
jchandra 311499
jmallett 289413
peter 257575
rwatson 239382
jhb 236634
jimharris 227669
vkashyap 220986

5.3. Analyzing time series snapshots
Creating a series of source code snapshots from a repository requires us

• to perform accurate data calculations,

• to represent the dates in a format that can be unambiguously parsed by the repos-
itory’s version control system, and

33

• to check out the corresponding version of the software.

Accurate date calculations on time intervals can be performed by expressing dates
in seconds from the start of an epoch (1970-01-01 on Unix systems). The Unix date
command allows the conversion of an arbitrary start date into seconds since Epoch.
Unfortunately, the way this is done differs between various Unix-like systems. The
following Unix shell function expects as its first argument a date expressed in ISO-
8601 basic date format (YYYYMMDD). It will print the date as an integer representing
seconds since Epoch.

iso_b_to_epoch()
{

case ‘uname‘ in
FreeBSD)

date −j "$1"0000.00 ’+%s’ ;;
Darwin)

Convert date to "mmdd0000yyyy.00" (time is 00:00:00)
MDHMY=‘echo $1 | sed ’s /\(....\)\(..\)\(..\)/\2\30000\1.00/ ’ ‘
date −j "$MDHMY" ’+%s’
;;

CYGWIN*)
date −d "$1" ’+%s’ ;;

Linux)
date −d "$1" ’+%s’ ;;

*)
echo "Unknown operating system type" 1>&2
exit 1

esac
}

The reverse conversion, from Epoch seconds to the ISO-8601 extended format
(YYYY-MM-DD), which most version control systems can parse unambiguously, again
depends on the operating system flavour. The following Unix shell function expects as
its first argument a date expressed as seconds since Epoch. It will print the correspond-
ing date in ISO format.

epoch_to_iso_e ()
{

case ‘uname‘ in
Darwin)

date −r $1 ’+%Y−%m−%d’ ;;
FreeBSD)

date −r $1 ’+%Y−%m−%d’ ;;
CYGWIN*)

date −d @$1 ’+%Y−%m−%d’ ;;
Linux)

date −d @$1 ’+%Y−%m−%d’ ;;
*)

34

echo "Unknown operating system type" 1>&2
exit 1

esac
}

As we would expect, the code to checkout a snapshot of the code for a given date
depends on the version control system in use. The following Unix shell function ex-
pects as its first argument an ISO-8601 extended format date. In addition, it expects that
the variable $REPO is set to one of the known repository types, and that it is executed
within a directory where code from that repository has already been checked out. It
will update the directory’s contents with a snapshot of the project stored in the repos-
itory for the specified date. In the case of a Bazaar repository, the resultant snapshot
will be stored in /tmp/bzr-checkout.

date_checkout ()
{

case "$REPO" in
bzr)

rm −rf /tmp/bzr−checkout
bzr export −r date:"$1" /tmp/bzr−checkout
;;

cvs)
cvs update −D "$1"
;;

git)
BRANCH=‘git config −−get−regexp branch.*remote |

sed −n ’s/^branch .//; s /\. remote origin // p’‘
HASH=‘git rev−list −n 1 −−before="$1" $BRANCH‘
git checkout $HASH
;;

hg)
hg update −d "$1"
;;

rcs)
Remove files under version control
ls RCS | sed ’s /, v$ // ’ | xargs rm −f
Checkout files at specified date
co −f −d"$1" RCS/*
;;

svn)
svn update −r "{$1}"
if [−d trunk]
then

DIR=trunk
else

DIR=.
fi

35

;;
*)

echo "Unknown repository type : $REPO" 1>&2
exit 1
;;

esac
}

Given the building blocks we saw, a loop to perform some processing on reposi-
tory snapshots over successive ten day periods starting from, say, 2005-01-01, can be
written as follows.

Start date (2005−01−1) in seconds since Epoch
START=‘iso_b_to_epoch 20050101‘

End date in seconds since Epoch
END=‘date ’+%s’‘

Time increment (10 days) in seconds
INCR=‘expr 10 * 24 * 60 * 60‘

DATE=$START
while [$DATE −lt $END]
do

date_checkout $DATE
Process the snapshot
DATE=‘expr $DATE + $INCR‘

done

5.4. Analyzing a checked out repository
Given a directory containing a project checked-out from a version control reposi-

tory, we can analyze it using the techniques listed in Section 3. Care must be taken to
avoid processing the data files associated with the version control system. A regular
expression that can match these files, in order to exclude them, can be set as follows,
according to the repository type.

case "$REPO" in
bzr)

Files are checked out in a new directory ; nothing to exclude
EXCLUDE=///
;;

cvs) EXCLUDE=’/CVS/’ ;;
git) EXCLUDE=.git ;;
hg) EXCLUDE=’/.hg/’ ;;
rcs) EXCLUDE=’/RCS/’ ;;
svn) EXCLUDE=’/.svn/’ ;;
esac

36

Another prerequisite for the analysis is identifying the source code files to analyze.
Files associated with specific programming languages can be readily identified by their
extension. For instance, C files end in .c; C++ files typically end in .cpp, .C, .cc,
or .cxx; while Java files end in .java. Therefore, the following command

find . −type f −name *.java

will output all the Java source code files residing in the current directory tree.
On the other hand, if we wish to process all source code files (for instance to count

the source code size in terms of lines) we must exclude binary files, such as those con-
taining images, sound, and compiled third-party libraries. This can be done by running
the Unix file command on each project file. By convention the output of file will contain
the word text only for text files (in our case source code and documentation).

Putting all the above together, here is a pipeline that measures the lines in a reposi-
tory snapshot checked out in the current directory.

Print names of files
find . −type f |

Remove from list version control data files
fgrep −−invert−match "$EXCLUDE" |

Print each file ’s type
file −−files−from − |

Print only the names of text files
sed −−quiet ’s /: .* text .*// p’ |

Terminate records with \0, instead of newline
tr \\ n \\0 |

Catenate the contents of all files together
xargs −−null cat |

Count the number of lines
wc −−lines

5.5. Combining files with metadata
The version control system can also be used to help us analyze a project’s files.

An invaluable feature is the annotation (also known as “blame”) command offered by
many version control systems. This will display a source code file, listing with each
line the last commit associated with it, the committer, and the corresponding date.

d62bd540 (linus1 1991-11-11 1) /*
d62bd540 (linus1 1991-11-11 2) * linux/kernel/sys.c
d62bd540 (linus1 1991-11-11 3) *
cf1bbb91 (linus1 1992-08-01 4) * Copyright (C) 1991 Linus Torvalds
d62bd540 (linus1 1991-11-11 5) */

37

d62bd540 (linus1 1991-11-11 6)
9984de1a (Paul Gortmaker 2011-05-23 7) #include <linux/export.h>
23d9e975 (linus1 1998-08-27 8) #include <linux/mm.h>
cf1bbb91 (linus1 1992-08-01 9) #include <linux/utsname.h>
8a219a69 (linus1 1993-09-19 10) #include <linux/mman.h>
d61281d1 (linus1 1997-03-10 11) #include <linux/reboot.h>
e674e1c0 (linus1 1997-08-11 12) #include <linux/prctl.h>
ac3a7bac (linus1 2000-01-04 13) #include <linux/highuid.h>
9a47365b (Dave Jones 2002-02-08 14) #include <linux/fs.h>
74da1ff7 (Paul Gortmaker 2011-05-26 15) #include <linux/kmod.h>
cdd6c482 (Ingo Molnar 2009-09-21 16) #include <linux/perf_event.h>
3e88c553 (Daniel Walker 2007-05-10 17) #include <linux/resource.h>
dc009d92 (Eric W. Biederman 2005-06-25 18) #include <linux/kernel.h>
e1f514af (Ingo Molnar 2002-09-30 19) #include <linux/workqueue.h>
c59ede7b (Randy.Dunlap 2006-01-11 20) #include <linux/capability.h>

Given such a list we can easily cut out specific columns with the Unix cut com-
mand, and analyze version control metadata at the level of source code lines rather
than complete files. For example, the following command will list the top contributors
in the file cgroup.c of the Linux kernel at its current state.

Annotated listing of the file
git blame kernel /cgroup.c |

Cut−out the author name
cut −−characters=11−30 |

Order by author name
sort |

Count consecutive author name occurences
uniq −−count |

Order occurences by their number
sort −−reverse −−numeric |

Show top contributors
head

This is the command’s output.

2425 Tejun Heo
1501 Paul Menage
496 Li Zefan
387 Ben Blum
136 Cliff Wickman
106 Aristeu Rozanski
60 Daniel Lezcano
52 Mandeep Singh Baines
42 Balbir Singh
29 Al Viro

Similarly we could find how many lines of the file stem from each year.

38

Annotated listing of the file
git blame kernel /cgroup.c |

Cut−out the commit’s year
cut −−characters=11−30 |

Order by year
sort −−key=2

This is the output we get by the preceding command.

1061 2007
398 2008
551 2009
238 2010
306 2011
599 2012
2243 2013
37 2014

5.6. Assembling repositories

Projects with a long history provide an interesting source data. However, the data
are seldom stored neatly in a single repository. More often than not there are snap-
shots from the beginning of a project’s lifetime, then one or more frozen dumps of
version control systems that are no longer used, and, finally, the live version control
system. Fortunately, Git and other modern version control systems, offer mechanisms
to assemble a project’s history retroactively, by piecing together various parts.

With Git’s graft feature, multiple Git repositories can be pieced together into a
whole. This is for instance the method Yoann Padioleau used to create a Git repository
of Linux’s history, covering the period 1992–2010.11 The last repository in the series is
the currently active Linux repository. Therefore, with a single git pull command,
the archive can be easily brought up to date. The annotated Linux file in Section 5.5
stems from a repository assembled in this way. A similar repository12 covers 40 years
of Unix development history.

If the repositories are not in Git format, then, given Git’s flexibility, the most expe-
dient way to combine them into Git format, and use the methods we saw in this section
for analyzing modern repositories.

Snapshots of a project can be imported into a Git repository with the correct date
and committer (which must be derived from external sources, such as timestamps),
using a Unix shell function like the following. This expects as its first argument the di-
rectory where the snapshot’s files are located, and as its second argument an ISO-8601
basic date format (YYYYMMDD) date associated with the snapshot. When run within a
directory where a Git repository has been checked out, it will add the files to the reposi-
tory with a commit dated as specified. The code utilizes the iso_b_to_epoch func-

11https://archive.org/details/git-history-of-linux
12https://github.com/dspinellis/unix-history-repo

39

https://archive.org/details/git-history-of-linux
https://github.com/dspinellis/unix-history-repo

tion we saw in Section 5.3. To specify the code’s author the git commit --author
flag can be added to the code.

snapshot_add()
{

rm −−recursive −−force *
cp −−recursive $1 .
git add *
GIT_AUTHOR_DATE="‘iso_b_to_epoch $2‘ +0000" \
GIT_COMMITTER_DATE="‘iso_b_to_epoch $2‘ +0000" \
git commit −−all −−message="Snapshot from $1"
git tag −−annotate "snap−$2" −m "Add tag for snapshot $2"

}

Importing into Git data stored in other repositories is relatively easy, thanks to ex-
isting libraries and tools that can be used for this purpose. Of particular interest is
the (badly misnamed) cvs2svn program,13 which can convert RCS [67] and CVS repos-
itories into Git ones. In addition, the Perl VCS-SCCS library14 contains an example
program that can convert legacy SCCS [48] repository data into Git format.

Finally, if a program that can perform the conversion cannot be found, a small script
can be written to print revision data in Git’s fast import format. This data can then be
fed into the git fast-import command, to import it into Git. The data format is a
textual stream, consisting of commands, like blob, commit, tag, and done, which
are complemented by associated data. According to the command’s documentation and
the personal experience of this study’s author, an import program can be written in a
scripting language within a day.

6. Data visualization

Given the volume and complexity of the data derived from the analysis methods
we examined, it is easier to automate the process of diagram creation, rather than using
spreadsheets or GUI-based graphics editors to draw them. The text-based tools we will
see in this section do not beat the speed of firing up a drawing editor to jot a few lines or
a spreadsheet to create a chart from a list of numbers. However, investing time to learn
them, allows us to be orders-of-magnitude more efficient in repeatedly diagramming
big data sets, performing tasks no one would dream of attempting in the GUI world.

6.1. Graphs

Perhaps the most impressive tool of those we will examine is dot. Part of the
Graphviz suite [13], originally developed by AT&T, it lets us describe hierarchical
relations between elements using a simple declarative language. For instance, with the
following input dot will generate the diagram shown in Figure 3.

13http://cvs2svn.tigris.org/cvs2svn.html
14http://search.cpan.org/dist/VCS-SCCS/

40

http://cvs2svn.tigris.org/cvs2svn.html
http://search.cpan.org/dist/VCS-SCCS/

a

b c

Figure 3: A simple diagram made with dot

Figure 4: The Linux directory tree

digraph {
a [shape="component"];
b [shape="box3d"];
c [shape="folder "];
a −> b;
a −> c [arrowhead="dot"];

}

Dot offers a wide choice of node shapes, arrows, and options for controlling the
graph’s layout. It can handle graphs with thousands of nodes. This study’s author
has used it to display class hierarchies, database schemas, directory trees, package
dependency diagrams, mechanical gear connections, and even genealogical trees. Its
input language is simple (mostly graph edges and nodes), and it is trivial to generate a
diagram from a script of just a few lines.

For example, the following Perl script will create a diagram of a directory tree.
When run on the Linux source code tree, it will generate the Figure 4 [58]. This
shows a relatively shallow and balanced tree organization, which could be a mark of
an organization that maintains an equilibrium between the changes brought by organic
growth and the order achieved through regular refactorings. An architect reviewer
might also question the few deep and narrow tree branches appearing in the diagram.

open(IN, " find $ARGV[0] −type d −print|");

while (<IN>) {

41

chop;
@paths = split (/\//, $_);
undef $opath;
undef $path;
for $p (@paths) {

$path .= " /$p";
$name = $path;
Make name a legal node label
$name =~ s/[^a−zA−Z0−9]/_/g;
$node{$name} = $p;
$edge{"$opath−>$name;"} = 1 if ($opath);
$opath = $name;

}
}

print ’digraph G {
nodesep=0.00001;
node [height =.001,width=0.000001,shape=box,fontname="", fontsize =8];
edge [arrowhead=none, arrowtail =none];

’ ;

for $i (sort keys %node) {
print " \ t$i [label =\"\"];\ n";

}
for $i (sort keys %edge) {

print " \ t$i \n";
}
print "}\n";

It is also easy to create diagrams from the version control system’s metadata. The
following Unix shell script will create a diagram of relationships between Linux au-
thors and committers. The result of processing the first 3000 lines of the Linux kernel
Git log can be seen in Figure 5.

(
Specify left −to right ordering
echo ’digraph { rankdir =LR;’

Obtain git log
git log −−pretty=fuller |

Limit to first 3000 lines
head −3000 |

Remove email
sed ’s /<.*// ’ |

42

 Aaron Plattner

 Rafael J. Wysocki

 Linus Torvalds

 Andrew Morton

 Al Viro

 Andy Adamson

 Trond Myklebust

 Anton Blanchard

 Benjamin Herrenschmidt

 Artem Fetishev

 Axel Lin

 Mark Brown

 Barry Song

 Linus Walleij

 Russell King

 Ben Hutchings

 Benoit Cousson Mike Turquette

 Colin Ian King

 Dave Jones

 David Howells

 Ditang Chen

 Geert Uytterhoeven

 Gerd Hoffmann

 Dave Airlie

 Joe Thornber Mike Snitzer

 Johannes Weiner

 Julius Werner

 Greg Kroah-Hartman

 Kieran Clancy

 Lars-Peter Clausen

 Laura Abbott

 Lauri Kasanen

 Alex Deucher

 Magnus Damm

 Marc Zyngier

 Paolo Bonzini

 Mark Rutland

 Mathias Nyman

 Michael Neuling

 Michael Opdenacker

 Michele Baldessari Tejun Heo

 Patrick Lai

 Paul Bolle

 Peter Zijlstra H. Peter Anvin

 Radim Krčmář

 Sagi Grimberg Nicholas Bellinger

 Sergei Antonov

 Shaohua Li Jens Axboe

 Vineet Gupta

 Viresh Kumar

 Wenyou Yang

Figure 5: Relationships between Linux authors and committers

43

t:thread :Toolkit

a1: run(3)

run()
 callbackLoop()

 «create»

p:Peer

handleExpose()

«destroy»

Figure 6: A diagram made with pic

Print author−committer pairs
awk ’

Store author and committer
/^Author :/ { $1 = ""; a = $0}
/^Commit:/{ $1 = ""; c = $0}
/^CommitDate:/{

if (a && c && a != c)
print "\"" a "\" −> \"" c "\";"

}’ |

Eliminate duplicates
sort −u
Close brace
echo ’}’

)

Three cousins of dot, also parts of GraphViz, are neato, for drawing undirected
graphs, and twopi and circo, for drawing radial and circular layout graphs. All use
an input language similar to dot’s. They are less useful for visualizing software sys-
tems, but in some cases they come in handy. For instance, this study’s author has used
neato has to draw the relationships between software quality attributes, links between
Wikipedia nodes, and collaboration patterns between software developers.

6.2. Declarative Diagrams
A slightly less declarative, but no less versatile, family of tools are those that target

text-based typesetting systems: TikZ [64], which is based on TEX [32], and pic [2],
which is based on troff [30]. The pic program was originally developed at AT&T’s Bell
Labs as part of the Unix document preparation tools [31], but these days it is more likely
to appear in its GNU groff reincarnation. Pic’s language gives us commands such as
box, circle, line, and arrow. Unlike the GraphViz tools, pic will not lay out the
diagram for us, but it makes up for its lack of intelligence by letting us create macros

44

and supporting loops and conditionals. This lets us define our own complex shapes
(for our project’s specialized notation) and then invoke them with a simple command.
In effect, we are creating our own domain-specific drawing language. As an example,
the following pic code, in conjunction with macros defined as part of the UMLGraph
system [53], will result in Figure 6.

.PS
copy "sequence. pic" ;

Define the objects
pobject (E," External Messages");
object (T," t : thread");
object (O,": Toolkit ");
pobject (P);

step ();

Message sequences
message(E,T,"a1: run(3)");
active (T);
message(T,O,"run()");
active (O);
message(O,O,"callbackLoop()");
cmessage(O,P,"p:Peer" , " ");
active (O);
message(O,P,"handleExpose()");
active (P);
rmessage(P,O,"");
inactive (P);
inactive (O);
dmessage(O,P);
inactive (T);
inactive (O);

step ();

complete(T);
complete(O);

.PE

6.3. Charts

When dealing with numbers, two useful systems for generating charts are gnu-
plot15 [25] and the R Project [65]. Gnuplot is a command-line driven graphing utility,

15http://www.gnuplot.info/

45

http://www.gnuplot.info/

whereas R is a vastly larger and more general system for performing statistical analysis,
which also happens to have a very powerful plotting library.

Gnuplot can plot data and functions in a wide variety of 2D and 3D styles, us-
ing lines, points, boxes, contours, vector fields, surfaces, and error bars. We specify
what our chart will look like with commands like plot with points and set
xlabel. To plot varying data (for instance, to track the number of new and corrected
bugs in a project), we typically create a canned sequence of commands that will read
the data from an external file our code generates.

As an example of using gnuplot to draw a chart from software-generated data,
consider the task of plotting a program’s stack depth [57, p. 270]. The stack depth at
the point of each function’s entry point can be obtained by compiling the program’s
code with profiling enabled (by passing the -pg flag to GCC), and using the following
custom profiling code to write the stack depth at the point of each call into file pointed
by the file descriptor fd.

_MCOUNT_DECL(frompc, selfpc) /* _mcount; may be static , inline , etc */
u_long frompc, selfpc ;

{
struct gmonparam *p;
void *stack = &frompc;

p = &_gmonparam;
if (p−>state != GMON_PROF_ON)

return;
p−>state = GMON_PROF_BUSY;
frompc −= p−>lowpc;
if (frompc > p−>textsize)

goto done;
write (fd , &stack, sizeof (stack));

done:
p−>state = GMON_PROF_ON;
return;

overflow :
p−>state = GMON_PROF_ERROR;
return;

}

MCOUNT

Then, a small script, like the following one written in Perl, can read the file and
create the corresponding gnuplot file, which will then create a chart similar to the one
seen in Figure 7. The information gathered from such a figure can be used to judge the
size and variation of the program’s stack size, and therefore allow the tuning of stack
allocation in memory-restricted embedded systems.

print OUT qq{
set ytics 500

46

6000

6500

7000

7500

8000

8500

93131088 93133588

Figure 7: Stack depth measurements plotted using gnuplot

set format x "%.0f"
set terminal postscript eps enhanced " Helvetica " 30
set output ’ stack .eps’
plot [] [] "−" using 1:2 notitle with lines
};
for (my $i = 0; $i < $nwords; $i++) {

read(IN, $b, 4);
my ($x) = unpack(’L’, $b);
$x = $stack_top − $x;
print OUT "$i $x\n";

}
print OUT "e\n";

More sophisticated diagrams can be plotted with R and the ggplot2 library [69].

6.4. Maps

The last domain that we will covere involves geographical data. Consider data
like the location of a project’s contributors, or the places where a particular software
is used. To place the corresponding numbers on the map, one option is the Generic
Mapping Tools (GMT) [68].16 We use these by plumbing together 33 tools that ma-
nipulate data and plot coastlines, grids, histograms, lines, and text using a wide range
of map substrates and projections. Although these tools are not as easy to use as the
others we have covered, they create high-quality output and offer extreme flexibility in
a demanding domain.

16http://gmt.soest.hawaii.edu/

47

http://gmt.soest.hawaii.edu/

180˚

240˚

300˚

0˚

60˚

120˚

180˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

10
1

10
1

10
2

10
3

10
4

10
5

LO
C

Figure 8: Contributions by FreeBSD developers around the world

As an example, consider the map depicting the contributions of FreeBSD develop-
ers around the world (Figure 8), showing that development is mainly concentrated in
Europe, North America, and Japan. The map was generated using the following script,
which ends with two GMT commands. As this is the last script of this work, it brings
together many of the techniques we have examined, integrating process and product
data with their visualization.

1. List developer locations
Remove comments, etc. from the FreeBSD contributor location file
sed ’ /^# /d ;/^ $/d;s /,/"/; s /,/"/; s /^#//; s /[]*// g’ \

/ usr / ports / astro / xearth / files / freebsd .committers .markers |

Print latitude , longitude , developer−id
awk ’BEGIN{FS="\x22"} {print $1, $2, $4}’ |

Split developers living in the same city
perl −na −e ’for $d (split (",", $F [2])) { print "$d $F[0] $F[1]\n"}’ |

Remove empty lines
sed ’ /^ /d’ |

Sort (for joining)
sort >dev−loc

2. Calculate lines per developer

48

Find files in the FreeBSD checked−out repository
find . −type f |

Remove version control files
grep −−invert−match CVS |

Create a log
xargs cvs −d /home/ncvs log −SN 2>/dev/null |

Total lines each developer has contributed
awk ’

/^ date /{ lines [$5 " " hour] += $9}
END {

for (i in lines)
print i , lines [i]}

’ |
Remove ;
sed ’s /;// g’ |

Sort (for joining)
sort >dev−lines

3. Plot the map
Join developer lines with their locations
join dev−lines dev−loc |

Round location positions to integer degrees
sed ’s /\.[0−9]*// g’ |

Total lines for each location
awk ’

{ lines [$4 " " $2] += $2}
END {

for (i in lines)
print i , lines [i]

}’ |

Draw the map
{

Draw the coastlines
pscoast −R−180/180/−90/90 −JX8i/5id −Dc −G0 −E200/40 \
−K W0.25p/255/255/255 −G0/255/0 −S0/0/255 −Di −P

Plot the data
psxyz −P −R−180/180/−90/90/1/100000 −JX −JZ2.5il \
−So0.02ib1 −G140 −W0.5p −O −E200/40 −B60g60/30g30/a1p:LOC:WSneZ

49

} >map.eps

Another alternative involves generating KML, the Google Earth XML-based file for-
mat, which we can then readily display through Google Earth and Maps. The limited
display options we get are offset by the ease of creating KML files and the resulting
display’s interactivity.

If none of the tools we have seen fits our purpose, we can dive into lower-level
graphics languages such as PostScript and SVG (Scalable Vector Graphics). This ap-
proach has been used to annotate program code [52] and to illustrate memory fragmen-
tation [57, p. 251]. Finally, we can always use ImageMagick17 to automate an image’s
low-level manipulation.

The tools described in this section offer a bewildering variety of output formats.
Nevertheless, the choice is easy. If we are striving for professional-looking output, we
must create vector-based formats such as PostScript, PDF, and SVG; we should choose
the format our software best supports. The resulting diagrams will use nice-looking
fonts and appear crisp, no matter how much we magnify them. On the other hand,
bitmap formats, such as PNG, can be easier to display in a presentation, memo, or Web
page. Often the best way to get a professional-looking bitmap image is to first generate
it in vector form and then rasterize it through Ghostscript or a PDF viewer. Finally, if
we want to polish a diagram for a one-off job, the clever route is to generate SVG and
manipulate it using the Inkscape18 vector-graphics editor.

7. Concluding Remarks

The software product and process analysis methods we have examined in this work
offer a number of advantages.

Flexibility and Extensibility The scripts we have seen can be easily modified and
adapted to suit a variety of needs. New tools can be easily added to our col-
lection. These can be existing tools, or tools developed to suit our own unique
needs.

Scalability The underlying tools have few if any inherent limits. Arbitrary amounts of
data can flow through pipelines, allowing the processing of gigantic amounts of
data. In our group we have used these approaches to process many hundreds of
gigabytes of data.

Efficiency The workhorses of many pipelines, git, sort, and grep, have been engi-
neered to be as efficient as possible. Other tools, such as join, uniq, and comm,
are designed to run in linear time. When the tools run together in pipelines, the
load is automatically divided among multiple processor cores.

Some may counter that the lack of a graphical user interface for using these analysis
methods results in a steep learning curve, which hinders their use. This however can be

17http://www.imagemagick.org/
18http://www.inkscape.org/

50

http://www.imagemagick.org/
http://www.inkscape.org/

mitigated in two ways. First, the use of each command can be easily learned by refer-
ring to its online manual page available through the man command, or by invoking the
command with the --help argument. In addition, the creation of analysis scripts can
be simplified by configuring, learning, and utilizing the shell’s command-line editing
and completion mechanisms.

Once the tools and techniques we examined are mastered, it is hard to find an
alternative where one can be similarly productive.

References

References

[1] Aho, A. V., Lam, M. S., Sethi, R., Ullman, J. D., 2007. Compilers: Principles,
Techniques, & Tools. Pearson/Addison Wesley.

[2] Bentley, J. L., Aug. 1986. Little languages. Communications of the ACM 29 (8),
711–721.

[3] Bevan, J., Whitehead, Jr., E. J., Kim, S., Godfrey, M., 2005. Facilitating software
evolution research with Kenyon. In: ESEC/FSE-13: Proceedings of the 10th Eu-
ropean software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering. ACM, New
York, NY, USA, pp. 177–186.

[4] Bird, C., Nagappan, N., June 2012. Who? where? what? examining distributed
development in two large open source projects. In: Mining Software Repositories
(MSR), 2012 9th IEEE Working Conference on. pp. 237–246.

[5] Capiluppi, A., Serebrenik, A., Youssef, A., June 2012. Developing an h-index for
oss developers. In: Mining Software Repositories (MSR), 2012 9th IEEE Work-
ing Conference on. pp. 251–254.

[6] Chidamber, S. R., Kemerer, C. F., 1994. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering 20 (6), 476–493.

[7] Cubranic, D., Murphy, G., Singer, J., Booth, K., June 2005. Hipikat: a project
memory for software development. Software Engineering, IEEE Transactions on
31 (6), 446–465.

[8] D’Ambros, M., Lanza, M., apr 2010. Distributed and collaborative software evo-
lution analysis with Churrasco. Science of Computer Programming 75 (4), 276–
287.

[9] Eyolfson, J., Tan, L., Lam, P., 2011. Do time of day and developer experience
affect commit bugginess? In: Proceedings of the 8th Working Conference on
Mining Software Repositories. MSR ’11. ACM, New York, NY, USA, pp. 153–
162.
URL http://doi.acm.org/10.1145/1985441.1985464

51

http://doi.acm.org/10.1145/1985441.1985464

[10] Friedl, J. E., 2006. Mastering Regular Expressions: Powerful Techniques for Perl
and Other Tools, 3rd Edition. O’Reilly Media, Sebastopol, CA.

[11] Gala-Pérez, S., Robles, G., González-Barahona, J. M., Herraiz, I., 2013. Inten-
sive metrics for the study of the evolution of open source projects: Case studies
from apache software foundation projects. In: Proceedings of the 10th Working
Conference on Mining Software Repositories. MSR ’13. IEEE Press, Piscataway,
NJ, USA, pp. 159–168.
URL http://dl.acm.org/citation.cfm?id=2487085.2487119

[12] Gall, H., Fluri, B., Pinzger, M. ., Jan-Feb 2009. Change analysis with Evolizer
and ChangeDistiller. IEEE Software 26 (1), 26 – 33.

[13] Gansner, E. R., North, S. C., 2000. An open graph visualization system and its
applications to software engineering. Software: Practice & Experience 30 (11),
1203–1233.

[14] Giaglis, G. M., Spinellis, D., Nov. 2012. Division of effort, productivity, quality,
and relationships in FLOSS virtual teams: Evidence from the FreeBSD project.
Journal of Universal Computer Science 18 (19), 2625–2645.
URL http://www.dmst.aueb.gr/dds/pubs/jrnl/
2012-JUCS-GSD/html/GS12b.html

[15] Gousios, G., 2013. The ghtorrent dataset and tool suite. In: Proceedings of the
10th Working Conference on Mining Software Repositories. MSR ’13. IEEE
Press, Piscataway, NJ, USA, pp. 233–236.

[16] Gousios, G., Spinellis, D., May 2009. A platform for software engineering
research. In: Godfrey, M. W., Whitehead, J. (Eds.), MSR ’09: Proceedings of the
6th Working Conference on Mining Software Repositories. IEEE, pp. 31–40.
URL http://www.dmst.aueb.gr/dds/pubs/conf/
2009-MSR-Alitheia/html/GS09b.html

[17] Gousios, G., Spinellis, D., Jun. 2012. GHTorrent: Github’s data from a firehose.
In: Lanza, M., Penta, M. D., Xie, T. (Eds.), 9th IEEE Working Conference on
Mining Software Repositories (MSR). IEEE, pp. 12–21.
URL http://www.dmst.aueb.gr/dds/pubs/conf/
2012-MSR-GitHub/html/github-mirror.html

[18] Gousios, G., Spinellis, D., 2014. Conducting quantitative software engineering
studies with Alitheia Core. Empirical Software Engineering 19 (4), 885–925.

[19] Grune, D., 1986. Concurrent versions system, a method for independent cooper-
ation. Report IR-114, Vrije University, Amsterdam, NL.

[20] Gyerik, J., 2013. Bazaar Version Control. Packt Publishing Ltd, Birmingham,
UK, iSBN 978-1849513562.

52

http://dl.acm.org/citation.cfm?id=2487085.2487119
http://www.dmst.aueb.gr/dds/pubs/jrnl/2012-JUCS-GSD/html/GS12b.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2012-JUCS-GSD/html/GS12b.html
http://www.dmst.aueb.gr/dds/pubs/conf/2009-MSR-Alitheia/html/GS09b.html
http://www.dmst.aueb.gr/dds/pubs/conf/2009-MSR-Alitheia/html/GS09b.html
http://www.dmst.aueb.gr/dds/pubs/conf/2012-MSR-GitHub/html/github-mirror.html
http://www.dmst.aueb.gr/dds/pubs/conf/2012-MSR-GitHub/html/github-mirror.html

[21] Hemmati, H., Nadi, S., Baysal, O., Kononenko, O., Wang, W., Holmes, R., God-
frey, M. W., 2013. The MSR cookbook: Mining a decade of research. In: Pro-
ceedings of the 10th Working Conference on Mining Software Repositories. MSR
’13. IEEE Press, Piscataway, NJ, USA, pp. 343–352.

[22] Herraiz, I., Izquierdo-Cortazar, D., Rivas-Hernandez, F., González-Barahona, J.,
Robles, G., Dueñas Dominguez, S., Garcia-Campos, C., Gato, J., Tovar, L., march
2009. Flossmetrics: Free/libre/open source software metrics. In: CSMR ’09: 13th
European Conference on Software Maintenance and Reengineering. pp. 281–284.

[23] Hovemeyer, D., Pugh, W., Dec. 2004. Finding bugs is easy. ACM SIGPLAN
Notices 39 (12), 92–106, oOPSLA 2004 Onward! Track.

[24] Howison, J., Conklin, M., Crowston, K., 2006. Flossmole: A collaborative repos-
itory for FLOSS research data and analyses. International Journal of Information
Technology and Web Engineering 1 (3), 17–26.

[25] Janert, P. K., 2009. Gnuplot in Action: Understanding Data with Graphs. Man-
ning Publications.

[26] Johnson, P., Kou, H., Paulding, M., Zhang, Q., Kagawa, A., Yamashita, T.,
July-Aug. 2005. Improving software development management through software
project telemetry. Software, IEEE 22 (4), 76–85.

[27] Kagdi, H., Collard, M. L., Maletic, J. I., Mar. 2007. A survey and taxonomy of
approaches for mining software repositories in the context of software evolution.
Journal of Software Maintenance and Evolution: Research and Practice 19 (2),
77–131.

[28] Kamiya, T., Kusumoto, S., Inoue, K., Jul. 2002. CCFinder: A multilinguistic
token-based code clone detection system for large scale source code. IEEE Trans-
actions on Software Engineering 28 (7), 654–670.

[29] Kechagia, M., Spinellis, D., 2014. Undocumented and unchecked: Exceptions
that spell trouble. In: MSR ’14: Proceedings of the 11th Working Conference on
Mining Software Repositories. ACM, pp. 312–315.

[30] Kernighan, B., Lesk, M., Ossanna, J. J., July-August 1978. UNIX time-sharing
system: Document preparation. Bell System Technical Journal 56 (6), 2115–
2135.

[31] Kernighan, B. W., July/August 1989. The UNIX system document preparation
tools: A retrospective. AT&T Technical Journal 68 (4), 5–20.

[32] Knuth, D. E., 1986. TeX: The Program. Addison-Wesley, Reading, MA.

[33] Lattner, C., Adve, V., 2004. LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In: CGO 2004: International Symposium on
Code Generation and Optimization. IEEE, pp. 75–86.

53

[34] Lesk, M. E., Oct. 1975. Lex—a lexical analyzer generator. Computer Science
Technical Report 39, Bell Laboratories, Murray Hill, NJ.

[35] Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C., Baldi, P., 2009.
Sourcerer: mining and searching internet-scale software repositories. Data Min-
ing and Knowledge Discovery 18, 300–336, 10.1007/s10618-008-0118-x.

[36] Lippert, M., Roock, S., 2006. Refactoring in Large Software Projects. John Wiley
& Sons, Chichester, England Hoboken, NJ.

[37] Liu, K., Tan, H. B. K., Chen, X., August 2013. Binary code analysis. Computer
46 (8), 60–68.

[38] Loeliger, J., McCullough, M., 2012. Version Control with Git: Powerful tools
and techniques for collaborative software development. O’Reilly Media, Inc., Se-
bastopol, CA, iSBN 978-1449316389.

[39] Mitropoulos, D., Karakoidas, V., Louridas, P., Gousios, G., Spinellis, D., 2014.
The bug catalog of the Maven ecosystem. In: MSR ’14: Proceedings of the 2014
International Working Conference on Mining Software Repositories. ACM, pp.
372–365.

[40] Mockus, A., 2009. Amassing and indexing a large sample of version control sys-
tems: Towards the census of public source code history. In: Proceedings of the
2009 6th IEEE International Working Conference on Mining Software Reposito-
ries. MSR ’09. IEEE Computer Society, Washington, DC, USA, pp. 11–20.

[41] Mulazzani, F., Rossi, B., Russo, B., Steff, M., Oct 2011. Building knowledge in
open source software research in six years of conferences. In: Hissam, S., Russo,
B., de Mendonça Neto, M., Kon, F. (Eds.), Proceedings of the 7th International
Conference on Open Source Systems. IFIP, Springer, Salvador, Brazil, pp. 123–
141.

[42] Nierstrasz, O., Ducasse, S., Gı̌rba, T., 2005. The story of Moose: an agile reengi-
neering environment. In: Proceedings of the 10th European software engineer-
ing conference held jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering. ESEC/FSE-13. ACM, New York, NY,
USA, pp. 1–10.

[43] Ossher, J., Bajracharya, S., Linstead, E., Baldi, P., Lopes, C., 2009. SourcererDB:
An aggregated repository of statically analyzed and cross-linked open source
Java projects. In: Proceedings of the International Workshop on Mining Software
Repositories. IEEE Computer Society, Vancouver, Canada, pp. 183–186.

[44] O’Sullivan, B., Sep. 2009. Making sense of revision-control systems. Communi-
cations of the ACM 52 (9), 56–62.

[45] O’Sullivan, B., 2009. Mercurial: The definitive guide. O’Reilly Media, Inc., Se-
bastopol, CA, iSBN 978-0596800673.

54

[46] Pilato, C. M., Collins-Sussman, B., Fitzpatrick, B. W., 2009. Version control with
Subversion. O’Reilly Media, Inc., Sebastopol, CA, iSBN 978-0-596-51033-6.

[47] R Core Team, 2012. R: A language and environment for statistical computing.

[48] Rochkind, M. J., 1975. The source code control system. IEEE Transactions on
Software Engineering SE-1 (4), 255–265.

[49] Rosenberg, L. H., Stapko, R., Gallo, A., Nov. 1999. Applying object-oriented
metrics. In: Sixth International Symposium on Software Metrics—Measurement
for Object-Oriented Software Projects Workshop. Presentation available on-
line http://www.software.org/metrics99/rosenberg.ppt (Jan-
uary 2006).
URL http://www.software.org/metrics99/rosenberg.ppt

[50] Sarma, A., Maccherone, L., Wagstrom, P., Herbsleb, J., 2009. Tesseract: Interac-
tive visual exploration of socio-technical relationships in software development.
In: Proceedings of the 31st International Conference on Software Engineering.
ICSE ’09. IEEE Computer Society, Washington, DC, USA, pp. 23–33.

[51] Spinellis, D., Jun. 2000. Outwit: Unix tool-based programming meets the
Windows world. In: Small, C. (Ed.), USENIX 2000 Technical Conference
Proceedings. USENIX Association, Berkeley, CA, pp. 149–158.
URL http://www.dmst.aueb.gr/dds/pubs/conf/
2000-Usenix-outwit/html/utool.html

[52] Spinellis, D., 2003. Code Reading: The Open Source Perspective. Addison-
Wesley, Boston, MA.
URL http://www.spinellis.gr/codereading

[53] Spinellis, D., March/April 2003. On the declarative specification of models.
IEEE Software 20 (2), 94–96.
URL http://www.dmst.aueb.gr/dds/pubs/jrnl/
2003-IEEESW-umlgraph/html/article.html

[54] Spinellis, D., July/August 2005. Tool writing: A forgotten art? IEEE Software
22 (4), 9–11.
URL http://www.dmst.aueb.gr/dds/pubs/jrnl/
2005-IEEESW-TotT/html/v22n4.html

[55] Spinellis, D., September/October 2005. Version control systems. IEEE Software
22 (5), 108–109.
URL http://www.dmst.aueb.gr/dds/pubs/jrnl/
2005-IEEESW-TotT/html/v22n5.html

[56] Spinellis, D., November/December 2005. Working with Unix tools. IEEE
Software 22 (6), 9–11.
URL http://www.dmst.aueb.gr/dds/pubs/jrnl/
2005-IEEESW-TotT/html/v22n6.html

55

http://www.software.org/metrics99/rosenberg.ppt
http://www.software.org/metrics99/rosenberg.ppt
http://www.dmst.aueb.gr/dds/pubs/conf/2000-Usenix-outwit/html/utool.html
http://www.dmst.aueb.gr/dds/pubs/conf/2000-Usenix-outwit/html/utool.html
http://www.spinellis.gr/codereading
http://www.dmst.aueb.gr/dds/pubs/jrnl/2003-IEEESW-umlgraph/html/article.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2003-IEEESW-umlgraph/html/article.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2005-IEEESW-TotT/html/v22n4.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2005-IEEESW-TotT/html/v22n4.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2005-IEEESW-TotT/html/v22n5.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2005-IEEESW-TotT/html/v22n5.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2005-IEEESW-TotT/html/v22n6.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2005-IEEESW-TotT/html/v22n6.html

[57] Spinellis, D., 2006. Code Quality: The Open Source Perspective. Addison-
Wesley, Boston, MA.
URL http://www.spinellis.gr/codequality

[58] Spinellis, D., May 2008. A tale of four kernels. In: Schäfer, W., Dwyer, M. B.,
Gruhn, V. (Eds.), ICSE ’08: Proceedings of the 30th International Conference
on Software Engineering. Association for Computing Machinery, New York, pp.
381–390.
URL http://www.dmst.aueb.gr/dds/pubs/conf/
2008-ICSE-4kernel/html/Spi08b.html

[59] Spinellis, D., Apr. 2010. CScout: A refactoring browser for C. Science of
Computer Programming 75 (4), 216–231.
URL http://www.dmst.aueb.gr/dds/pubs/jrnl/
2010-SCP-CScout/html/cscout.html

[60] Spinellis, D., 2010. The Unix tools are your friends. In: Henney, K. (Ed.), 97
Things Every Programmer Should Know. O’Reilly, Sebastopol, CA, pp. 176–
177.
URL http://programmer.97things.oreilly.com/wiki/index.
php/The_Unix_Tools_Are_Your_Friends

[61] Spinellis, D., May/June 2012. Git. IEEE Software 29 (3), 100–101.
URL http://www.dmst.aueb.gr/dds/pubs/jrnl/
2005-IEEESW-TotT/html/v29n3.html

[62] Spinellis, D., Louridas, P., Jul. 2007. A framework for the static verification of
API calls. Journal of Systems and Software 80 (7), 1156–1168.
URL http://www.dmst.aueb.gr/dds/pubs/jrnl/
2007-JSS-api-verify/html/SL07b.html

[63] Steff, M., Russo, B., June 2012. Co-evolution of logical couplings and commits
for defect estimation. In: Mining Software Repositories (MSR), 2012 9th IEEE
Working Conference on. pp. 213–216.

[64] Tantau, T., 2013. Graph drawing in TikZ. In: Proceedings of the 20th International
Conference on Graph Drawing. GD’12. Springer-Verlag, Berlin, Heidelberg, pp.
517–528.

[65] The R Development Core Team, 2010. R: A language and environment for statis-
tical computing. R Foundation for Statistical Computing, 2nd Edition.
URL http://www.lsw.uni-heidelberg.de/users/christlieb/
teaching/UKStaSS10/R-refman.pdf

[66] Thomas, S. W., Adams, B., Hassan, A. E., Blostein, D., 2011. Modeling the
evolution of topics in source code histories. In: Proceedings of the 8th Working
Conference on Mining Software Repositories. MSR ’11. ACM, New York, NY,
USA, pp. 173–182.
URL http://doi.acm.org/10.1145/1985441.1985467

56

http://www.spinellis.gr/codequality
http://www.dmst.aueb.gr/dds/pubs/conf/2008-ICSE-4kernel/html/Spi08b.html
http://www.dmst.aueb.gr/dds/pubs/conf/2008-ICSE-4kernel/html/Spi08b.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2010-SCP-CScout/html/cscout.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2010-SCP-CScout/html/cscout.html
http://programmer.97things.oreilly.com/wiki/index.php/The_Unix_Tools_Are_Your_Friends
http://programmer.97things.oreilly.com/wiki/index.php/The_Unix_Tools_Are_Your_Friends
http://www.dmst.aueb.gr/dds/pubs/jrnl/2005-IEEESW-TotT/html/v29n3.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2005-IEEESW-TotT/html/v29n3.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2007-JSS-api-verify/html/SL07b.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2007-JSS-api-verify/html/SL07b.html
http://www.lsw.uni-heidelberg.de/users/christlieb/teaching/UKStaSS10/R-refman.pdf
http://www.lsw.uni-heidelberg.de/users/christlieb/teaching/UKStaSS10/R-refman.pdf
http://doi.acm.org/10.1145/1985441.1985467

[67] Tichy, W. F., Sep. 1982. Design, implementation, and evaluation of a revision
control system. In: Proceedings of the 6th International Conference on Software
Engineering. ICSE ’82. IEEE, pp. 58–67.

[68] Wessel, P., Smith, W. H. F., 1991. Free software helps map and display data. EOS
Transactions American Geophysical Union 72 (41), 441, 445–446.

[69] Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag.

57

	Introduction
	A rational analysis pipeline
	Getting the data
	Selection
	Processing
	Summarizing
	Plumbing

	Source code analysis
	Heuristics
	Lexical analysis
	State machines
	Lexical analyzer generator

	Parsing and semantic analysis
	Third party tools

	Compiled code analysis
	Assembly language
	Machine Code
	Dealing with name mangling
	Byte Code
	Dynamic linking
	Libraries

	Analysis of configuration management data
	Obtaining repository data
	Analyzing metadata
	Analyzing time series snapshots
	Analyzing a checked out repository
	Combining files with metadata
	Assembling repositories

	Data visualization
	Graphs
	Declarative Diagrams
	Charts
	Maps

	Concluding Remarks

