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Abstract 
The increased application of software-controlled digital electronics hinders the 

understanding of how things work. The information train is a scientific experiment exhibit 

that physically demonstrates how computers communicate. It comprises a network in which 

a model Lego train acts as a physical carrier transferring a picture's pixels from one 

computer to the other. The sending end computer scans a simple picture, and directs a 

model train to send that pixel to the receiving end computer. This is done by sensing the 

approaching train and switching a rail junction depending on whether a pixel is on or off. The 

train carries on its top a piece that rotates depending on the train’s route, thus carrying the 

data between the two computers. At the receiving end, two sensors detect the shape’s 

orientation allowing the receiving-end computer to reassemble the picture bit-by-bit, pixel-

by-pixel. The receiving-end computer is a One Laptop per Child (OLPC) XO-1 machine, 

programmed using EToys. This provides further opportunities for motivated adventurous 

children to interact with the experiment’s implementation. 

 

 

When I was a kid I had a pretty good idea of how most appliances in our home worked. The 

phone was a circuit that physically connected the microphone at each end with the speaker 

at the other end. The record player’s needle picked up the sound from the grooves of a 

rotating disc and converted it to current through a magnetic coil. Even the TV was a 

relatively simple affair: two electromagnets had a ray scan the picture while it was 

modulated to turn parts of the screen white. 

How things change… Nowadays to give a similarly realistic picture to our generation’s 

children I have to talk about analog to digital conversion, CPUs, flash memory, compression, 

psychoacoustic coding, packet routing, pixels, color perception, and liquid crystal displays. 

Or lie. 

Yet, there is still value in understanding the basic principles of modern communication 

technologies, even at the cost of brave simplifications, for this will seed in our children the 

interest in the world surrounding them, the willingness to explore it, and, maybe, the 

ambition to pursue a personally and socially rewarding career in science and engineering. 



 

Figure 1 Experimental setup 

In response to this goal, I created a scientific experiment exhibit that physically 

demonstrates how computers communicate with each other by setting up a network in 

which a model Lego train transfers a picture's pixels from one computer to the other (Figure 

1). In brief, the sending end computer (on the figure’s left) scans a simple picture from left to 

right and from top to bottom, and directs a model train (on the front) to send that pixel to 

the receiving end computer (on the right). This is done by sensing the approaching train and 

switching a rail junction (front-left) depending on whether a pixel is on or off. The train 

carries on its top a horizontally-mounted L-shaped piece, hinged in a way that allows it to 

rotate so that it protrudes from the train’s left or right side. This part carries the data 

between the two computers. Depending on the track to which the junction sends the train, 

the train will pass close to a column on its left (red) or right hand side (blue), thereby 

rotating the L-piece to the corresponding direction. At the receiving end, a sensor (yellow, 

on the right) detects the train’s passing, and a second one (green-blue, on the front right) 

checks to see the shape’s orientation. Based on that input the receiving-end computer 

reassembles the picture bit-by-bit, pixel-by-pixel. 

The exhibit is based on readily available components. The use of a large-scale (Duplo) Lego 

train provides a robust, accessible, and configurable platform to which children can easily 

relate to. The sending and receiving computers are laptops. In contrast to desktop 

computers, these are self-contained, and can therefore easily communicate their sending or 

receiving function by placing them near the positions of the track related to it. One of the 

laptops is a One Laptop Per Child (Lee 2006) XO-1 model, thus demonstrating the machine’s 

educational potential. The interfacing parts are bespoke circuits based on cheap electronic 

components. Although the same functionality could have been achieved using Lego-

provided black-box components, like WeDo or Mindstorms, the chosen alternative is more 

open and affordable. Most modern PCs lack simple general purpose input output ports. In 

particular, USB ports require complex interfacing hardware and device drivers. I therefore 

repurposed ports provided for other purposes. Nevertheless, the USB ports proved useful 

for providing a relatively clean 5V supply needed to power the sensors. 



Sender implementation 

 

Figure 2 The sending computer 

 

Figure 3 Sender motor control circuit 

On the sender side (Figure 2), interfacing takes place through the laptop’s parallel printer 

port. This supports eight output bits and five input bits used for signaling conditions like 

“printer busy” or “out of paper”. A motor is used to control the rail junction’s position 

through a rack and pinion assembly. The motor control circuit (Figure 3) uses two of the 

printer port’s output bits to control the junction’s motor, according to the following table. 

Bit A Bit B Motor 

0 0 Stopped 

0 1 Forward 

1 0 Reverse 

1 1 Not allowed 



This is done by using a Darlington transistor array integrated circuit (Texas Instruments 

1976) to control the windings of two relays, which in turn switch externally-supplied current 

to the motor. One of the relays controls the motor’s power and the other its rotational 

direction. The Darlington transistors were wired in pairs to increase their current driving 

capability. 

  

Figure 4 Sender motor control physical construction 

All the exhibit’s circuits are constructed on breadboard (Figure 4). Connections between the 

components are made using shielded copper wire. By heating the wire’s end with a soldering 

iron and some solder the wire’s enamel insulation melts away, allowing it to be soldered to a 

component’s pin. The power required for all the experiment’s circuits is obtained from each 

computer’s USB port, thus doing away with the need to deploy additional power supply 

units. 

   

Figure 5 Junction driver construction. On each end of the rack are the constraining brakes. 

For the sake of simplicity, the motor runs in an open-loop configuration, i.e. the controlling 

software obtains no feedback regarding the junction’s position. Instead, the movement of 

the gear that drives the function is physically constrained on both ends (Figure 5), and the 

software overcompensates on the time it allows the motor to run. 



  

Figure 6 Train sensor board and its mounting 

 

Figure 7 Train sensor board circuit 

The sender side also needs to sense when a train is approaching in order to transmit the 

next pixel. This task is performed by a sensor board mounted vertically by the side of the 

rails (Figure 6). The sensor circuit (Figure 7) is based on an integrated reflective optical 

sensor with transistor output (Vishay 2012). This combines in a single package a 950nm 

infrared emitter and a matching phototransistor. The package’s window contains a daylight 

blocking filter, thus improving the construction’s noise immunity. The transistor’s output is 

fed to a voltage comparator designed to operate from a single power supply (Fairchild 2012). 

This is used to convert the phototransistor’s varying output voltage into a TTL-compatible 

digital signal that can be fed as input to the computer’s printer port. The comparator’s 

reference voltage is set by means of a trimmer potentiometer allowing the precise 

adjustment of the sensor’s triggering condition. 

The sender-side software is written in the Processing programming language (Read and Fry 

2007). The image to transfer (a human stick figure) is stored in a rectangular array of 

Boolean values, which is initialized from an image drawn in the source code using so-called 

ASCII art. This provides a visual representation of the figure in the code, as can be seen in 

the following code excerpt. 

    // Initialize the img array from its textual image representation 
    String simg = " # " + 
                  "###" + 
                  " # " + 
                  " # " + 
                  "# #"; 



    for (int r = 0; r < rows; r++) 
        for (int c = 0; c < cols; c++) 
            img[r][c] = (simg.charAt(r * cols + c) == '#'); 

 

Programs written in Processing have by default an implicit event and drawing loop, which 

continuously calls the program’s draw function. To guide the program’s control flow I coded 

the operation of the draw function as a simple state machine (see Figure 8). The program 

starts its operation in the Waiting state. Once the detector senses a passing train, it 

advances the row and column that must be sent, turns on the motor in the appropriate 

direction, and initializes a timer. In 250ms the state becomes Idle, indicating a state where 

the program waits for the trim to pass through the function. Two seconds later, the program 

will enter the Waiting state, waiting for the train to make its next round. 

 

 

Figure 8 State transition diagram depicting the program’s operation 

The draw function will also redraw the image being sent, flashing the pixel in transit with a 

duty cycle of 500ms.  This is done with the following code. 

    for (int r = 0; r < rows; r++) 
        for (int c = 0; c < cols; c++) { 
            if (r == sendingRow && c == sendingCol && 
         ((millis() / 500) & 1) == 0) { 
                if (img[r][c]) 
     // Flash ON pixel 
                    drawFill(color(180, 64, 64)); 
                else 
     // Flash OFF pixel 
                    drawFill(color(64)); 
            } else if (img[r][c]) 
  // Draw ON pixel 
                drawFill(color(255, 0, 0)); 
            else 
  // Draw OFF pixel 
                drawFill(color(0)); 
            drawPixel(r, c); 
        } 

 



The Processing language is based on Java, which cannot directly access I/O ports. 

Complicating matters further, modern versions of the Windows operating system, do not 

allow any user-mode program to access I/O ports. These two restrictions were lifted by 

downloading and installing the ParallelPort Java class, which uses the Java native code 

interface (JNI) to access the parallel port, and the UserPort device driver, which allows user-

mode programs to access the I/O ports. 

Receiver implementation 

 

Figure 9 The receiving computer 

 

Figure 10 The rotating device mounted on the train and the bit sensor 

The receiving computer is based on a late-prototype of the One Laptop per Child XO-1 

computer, in order to demonstrate the platform’s effectiveness as an experimentation and 

teaching aid (Figure 9). Two sensors are used: a vertically mounted one to detect the 

approaching train and a horizontally mounted one to sense the value of the bit that the train 

is carrying on its top (Figure 10). 



  

Figure 11 Receiving-end sensor circuit and board 

In contrast to the circuit of the sending-end computer, the receiving-end sensor circuit 

(Figure 11) does not convert the phototransistor’s analog voltage level into a digital signal. 

Instead, it utilizes a hardware design feature of XO-1 that allows its audio input to be used as 

a sensor for analog values. This feature is there to aid experimentation and does indeed 

simplify the sensor’s connection. Thus, the two sensors are directly connected to the XO-1 

audio input. 

The receiver’s software was implemented in the Squeak  (Ingalls et al 1997) EToys 

environment (Gaelli et al 2006) as ported to the XO-1 laptop (Freudenberg et al 2009). The 

XO-1 laptop port allows EToys to be used from within the XO-1 shell by adopting the look 

and feel of other OLPC activities, by providing support for the persistence of programming 

projects through the environment’s journal facility rather than files, and by allowing the 

sharing of projects between pupils. In addition, the port addresses particularities of the 

laptop’s hardware, such as the higher screen resolution, a processor with relatively low 

performance (433MHz), a color scheme that is not based on sub-pixel color components, 

and the ability of the audio jack to be used for sensor input. This last feature requires the 

analog to digital converter hardware to be switched from AC mode into a DC mode thereby 

removing the filtering of an audio signal’s DC component. A new object, called “World 

Stethoscope” supports the use of the microphone jack as a sensor.  



 

Figure 12 Receiver state machine: plain (left), error correcting (right) 

Given that the EToys’ World Stethoscope object provides only a single input it is used to 

handle the input both from the sensor detecting the train’s approach and the sensor 

detecting the bit’s value. This is done by implementing in software what is effectively a 

frequency modulation decoder. The software waits for a fixed time interval after a train 

passes to see if a “1” bit is detected by the bit value sensor. If the sensor does not detect 

such a value, the software assumes that the value is “0”.  

The receiver is implemented as a state machine (see Figure 12 left). In the waitTrain state 

the software waits for a train to approach.  When the sensor’s read out value rises above a 

pre-determined threshold, the software enters into the waitZero state, where the 

software waits for the train to move away from the train sensor. This happens when the 

sensor’s read out value falls below the threshold value. At that point the software enters the 

waitBit state, where it zeroes a tick counter and the bit value and waits for a bit sensor 

value to appear. If the sensor’s read out value rises above the threshold, the bit value is set 

to true (1). After 30 ticks, a dot (pixel) with the recorded bit value is added to the image 

reconstructed on the screen, and the image’s current coordinates are updated. (The image is 

transmitted as a series of pixels; the receiver has hard-coded the image’s dimensions.) 

The experiment also allows the demonstration of error detection and correction. Under this 

scheme, each pixel is transmitted three times; at least two “1” values indicate a pixel with an 

“on” value, while at least two “0” values indicate a pixel with an “off” value. Errors can be 

easily introduced by manually manipulating the direction of the train’s L-shaped data carrier. 

The corresponding state machine diagram is illustrated in Figure 12 (right). An additional 

state, addBit, counts the number (nBit) and sum (sum) of the bits received. When three 

bits have been received (the train has passed three times from the receiving station), a pixel 

is added based on the bits’ sum value, and the two counters are zeroed. 



The EToys factor 

 

Figure 13 Programming the EToys World Stethoscope object on the XO-1 laptop 

Figure 13 illustrates the EToys programming environment running on the XO-1 laptop. 

Programming the receiver in the EToys environment proved to be a productive and 

enjoyable experience. The integration of the analog sensor within EToys was a pleasant 

surprise compared to the pain associated with the three barriers that needed to be 

overcome (Processing, Java, Windows) in order to access the printer port on the sender side. 

Furthermore, the World Stethoscope object, whose controller and observer appear on the 

top left of Figure 13, made it easy to observe directly the sensor’s value and create an 

appropriate threshold for detecting objects. 

Interestingly, there is a one-to-one correspondence between each state of the state 

machine that describes the receiving software functioning and an EToys script. This makes it 

easy to understand how the state machine functions and to observe its operation. Scripts in 

EToys can be running or paused. Pausing a script and starting another one is the equivalent 

of moving from one state to another. During development it was easy to set the machine to 

a specific state, simply by clicking on the corresponding script’s clock icon to have the script 

begin “ticking” and thereby made active. 

Similarly, all the variables and states associated with the receiver were easily visible as a 

sensor pane (top right on Figure 13). This made it easy to debug the software during 

development, but, more importantly, it also allowed me to explain its operation when the 

experiment was demonstrated to children. For instance, it was fascinating to see the tick 

count begin to decrease once the train passed through the first sensor. In addition, 



explaining the error correction functionality without seeing the corresponding variables 

would have been futile. 

Experience and lessons learned 
The experiment was exhibited in a scientific experiment contest organized by the CAIDA 

non-profit organization and the Eugenides Foundation in Athens, Greece. There it was 

awarded one of the contest’s three prizes. The stated goal of the experiment was to 

demonstrate to children the basic elements of information theory (Shannon 1948): 

conversion of an image from analog to digital form, the transmission of information as bits, 

the reconstruction of an image from digital bits, and reliable communication in the presence 

of errors. The experiment’s Lego construction and the rapidly moving train attracted many 

children to the stand. A large proportion stayed to see the experiment in action, and many 

asked questions and appeared to understand the concepts behind it. Given the types of 

parents who take the children to science fairs, it was no surprise that many parents also 

asked questions, not only about the theory about behind the experiment, but (mostly) 

concerning its implementation. 

The experiment’s construction and operation proved to offer something for everyone. A 

toddler would look at the rotating train and listen it whistle as it passed from the receiving 

station, and even help the construction of the tracks. An older child could help with the 

other parts of the Lego construction, and observe how a train could transmit a picture pixel-

by-pixel from one computer to the other. Those with an interest in programming could 

observe the receiving end’s script operation, while the more mathematically inclined would 

appreciate the error correction algorithm. The design and soldering of the hardware as well, 

the sender implementation in the Processing language, and (probably) the design of the 

receiver software were tasks that required an adult. 

A need to involve an adult in the process should not be taken as a negative verdict on EToys. 

There are many interesting and worthwhile activities that children without the help of an 

adult can perform in EToys in general, and using the World Stethoscope object in particular. 

Examples include games, animations, demonstrations, and setups to react to the outside 

world. For instance a child could connect a photo-resistor to the XO-1’s input and have  a 

sun on a scene rise and set based on the light the resistor receives. Or it could build a simple 

alarm, by monitoring a switch to trigger a horn sound. Nevertheless, the World Stethoscope 

object could benefit from some polishing to make it more child-friendly. The elimination of 

terms like “Bias”, “DC”, and “calibration” from its user interface and operation, would go a 

long way toward this direction. Instead of the various adjustments, the corresponding 

operations could be performed transparently behind the scenes based on the input the 

object receives. 

EToys proved, once again (see Spinellis, 2008), to be an interesting platform to demonstrate 

non-trivial programming concepts. Alan Kay, a driving force behind Squeak on which EToys 

runs, has written that to learn science we “have to find ways to make the invisible visible” 

(Kay, 2003). This credo was made possible at many levels during the development of the 

experiment. Most obviously children could see the bits carried around on the train making 



their way into the picture. At a deeper level, elements of the receiver program were also 

visible. The state machine’s states, rather than being hidden behind an opaque variable, as is 

usually the case in such implementations (Thomas and Hunt 2002), were visible as separate 

scripts implementing the transitions. More impressively, the active state was also clearly 

visible during the operation as the currently running EToys script as a “running” script, 

whereas the scripts associated with the other states appeared as “paused”. Similarly visible 

were the values of all the program’s variables (see Figure 13). This allowed be to 

demonstrate to observers how the physical world (the train) interacted with the program: 

how the program’s variables changed as the train passed through the sensors and the scripts 

run and paused. 

The experiment’s modular construction allowed each part to be designed, constructed, and 

tested in isolation, allowing the experiment to be gradually implemented in a period of 

months. The modular construction also made it easy to transport the experiment: all parts 

could fit in a suitcase and could be readily assembled on site. Switching the junction motor 

with relays proved to be an easy and reliable method, in contrast to solid-state approaches 

tried for another task. In early phases of the construction the clicking of the relays provided 

reassuring feedback that the wiring and the software were working correctly. In contrast, 

the detection of objects using infrared sensors proved a tricky affair. Various integrated and 

transmitter/receiver pair sensors were tried with mixed success. Even the sensor used 

proved to have difficulty operating within the relatively large distance tolerances of the Lego 

train set. (The sensor’s intended use was optoelectronic encoder assemblies, such as index 

and coded disk scanning.) In the end, and an adequate signal level was obtained by covering 

the Lego parts that the sensor should detect with aluminum foil. 

Given the experiment’s vertical integration and its diverse elements (large scale, normal 

scale and Technic Lego parts, electronic sensors and actuators, laptops, software platforms, 

software code) the instances where design choices obviated the need for additional work or 

elements made a considerable difference to the project’s viability. These choices included 

the saving of two external power supplies by obtaining power from each laptop’s USB port, 

the ability of the XO-1 to use its microphone input as a DC voltage analog to digital 

converter, and the integration of that converter within the EToys platform. Although each 

saving may appear trivial, all together they can add up contributing to a project’s death by a 

thousand cuts. As a counterexample, accessing the printer port under Processing involved 

code written in C and in x86 assembly language. 

Attendees asked about other projects that could be implemented in a similar way, and 

provided some interesting ideas. For instance, one suggested that the receiver could be 

implemented using a single sensor that would first detect the train and then the presence of 

a “1” bit. In general, mapping microscopic and extremely fast phenomena onto an 

observable experiment can have many other applications. Here are some examples. 

Demonstrate the functioning of hard-disk secondary memory by physically storing bits (e.g. 

Lego blocks) on a large rotating disk. Make a concrete application out of the hard disk 

memory by storing a game’s high score. Show analog-to-digital and digital-to-analog 

conversion by loading a discrete number of blocks into a carriage. Explain printing by taking 



pictures with a physical camera and printing them using a motor-driven carriage driving a 

drawing servo-motor. The possibilities are endless. 

Perhaps the most important lesson I learned from the experiment was the importance of 

accessibility. The experiment provided affordances that allowed direct manipulation of many 

aspects of its operation. Children could readily observe the signal carried atop the train, stop 

the train to delay the signal, and change the value of the carried bit to see the effect on the 

receiving and or on the error-correction system. On the XO-1 EToys end children could also 

see the software’s operation laid bare like a cross-cut of a working car engine. Although I 

started with this as a design goal, I feel fortunate that this aspect worked better than my 

most optimistic expectations. 
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