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Tools in science

In 1908 Ernest Rutherford won the Nobel Prize in Chemistry “for his investiga-
tions into the disintegration of the elements, and the chemistry of radioactive
substances”. In support of his candidacy the Nobel Committee for Chemistry
wrote about the elegant experiments he performed to show that alpha particles
were in fact doubly-charged helium atoms. Rutherford was able to show this
through a simple but ingenious device. He had a glassblower create a tube with
an extremely thin wall that allowed the alpha particles emanating from the radon
gas it contained to escape. Surrounding that tube was another from which he
had emptied the air. After some days he found that the material accumulated
in the outer tube produced the spectrum of helium [1].

Science has always progressed mightily through the use of tools, which are
increasingly designed by scientists but built by engineers and technicians. Tele-
scopes allow us to see stars at the edge of our universe, imaging satellites uncover
the workings of our Earth, genome sequencers and microscopes let us examine
cells and molecules, and particle accelerators peer into the nature of atoms. Cur-
rently the world’s largest single machine is a tool explicitly built to advance our
scientific understanding of matter: CERN’s 27km-round Large Hadron Collider,
which more than ten thousand scientists and engineers from over a hundred
countries built over a period of ten years.

The tools we need

The availability and use of large data sets associated with software development
has transformed software engineering in ways described in other chapters of this
book. A key element for the application of data science in software engineering
is the availability of suitable tools. Such tools allow us to obtain data from novel
sources, measure processes and products, and analyze all that data to derive
insights that can advance science and everyday practice. By definition, scientific
advancement happens through work beyond the state of the art, so it should
come as no surprise that a lot of effort in data science involves building and
refining tools. In the following paragraphs I outline important types of tools and
best practices for building them. In order to provide insights on the building of
tools, the description is mostly based on personal experience.

First we need tools for obtaining metrics. Although software metrics have
been with us for decades, tools for obtaining them reliably are often hard to
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come by. I’ve seen research work where the metric collection was treated as
an afterthought, apparently delegated to inexperienced undergraduate students.
This is often evident from the quality of the corresponding tools, which may not
scale, may produce erroneous results, or may be difficult to build upon.

Partly as a result of such problems in 2005 I built, ckjm a tool that derives
Chidamber and Kemerer metrics from Java programs [2]. These are the weighted
methods per class, the depth of the inheritance tree, the number of children
per class, the coupling between object classes, the response for a class, and the
lack of cohesion in methods [16]. Designing ckjm to work as a Unix-style filter
allowed it to analyze arbitrarily-large projects, an advantage appreciated by
many of its users.

Also during 2000-2010 I built CScout, a source code analyzer and refactoring
browser for collections of C programs. It can process workspaces of multiple
projects (a project is defined as a collection of C source files that are linked
together) mapping the complexity introduced by the C preprocessor back into
the original C source code files. CScout takes advantage of modern hardware
advances (fast processors and large memory capacities) to analyze C source
code beyond the level of detail and accuracy provided by current compilers,
linkers, and other source code analyzers [3]. The analysis CScout performs takes
into account the identifier scopes introduced by the C preprocessor and the C
language proper scopes and namespaces. After the source code analysis CScout
can * perform accurate cross project identifier renames, * process sophisticated
queries on identifiers, files, and functions, * locate unused or wrongly-scoped
identifiers, * identify header files that don’t need to be included, and * create call
graphs spanning both C functions and function-like macros. The implementation
of CScout required developing a theory behind the analysis of C code in the
presence of the preprocessor [4], and the detailed handling of many compiler
extensions and edge cases. I used CScout to compare four operating system
kernels [5] and later look at the optimization of header-file include directives [6].
Both tasks required months of work in order to adjust CScout to the requirements
of the analysis task. Despite its sophistication CScout has seen considerably less
use than ckjm, probably because of the considerable work required to put it to
work.

More recently, in order to analyze the use and evolution of C language constructs
and style I adopted a simpler approach, and built qmcalc: a tool that will perform
lexical analysis of C source code read from its standard input and calculate and
print numerous metrics associated with it. The program reads a single C file
from its standard input and outputs raw figures and diverse quality metrics
associated with the code. These include the number of functions, lines, and
statements; the number of occurrences of various keywords; the use of comments
and preprocessing; the number and length of identifiers; the Halstead and
cyclomatic compexity per function; the use of spacing for indentation; a measure
of style inconsistency; and numbers associated with probable style infractions.
What qmcalc lacks in sophistication it offers in versatility, as it can process
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any code thrown at it, including code with errors or obscure undocumented
constructs. This made it easy to analyze millions of lines of diverse code [7].

A second category of tools are those we use to obtain or synthesize data
from processes and running products, which can then be distilled into metrics.
Such tools bridge the gap between the utilitarian data formats used to support
software developers and the needs of data science for software engineering. Given
that computers are reflective machines the possibilities for data collection are
endless. One example in this category is GHTorrent, a system that obtains
data through GitHub’s event API (whose raison d’être is the automation of
software development processes) and makes them available as a database [8, 17].
Another is a set of tools used to synthesize a Git repository containing 44 years
of Unix evolution from software distribution snapshots and diverse configuration
management repositories [9]. The development of both tools demonstrated the
difficulties associated with processing big, incomplete, and fickle data sets. The
associated tools must be able to handle perverse cases, such as dates lying several
years into the future or several kilobytes long file names. Other interesting data
generation tools are those that instrument IDEs to obtain usage details [10].
These can give us valuable insights on how developers actually work, minimizing
the risk of self-report bias. Instrumenting programs, libraries, and middleware
can also provide valuable data. For example, by modifying memory allocation
functions and a call graph profiler’s function call processing code I obtained data
to illustrate memory fragmentation and stack size variability [11].

Finally, a third category of tools are those we use to analyze data. Thankfully
in this segment there are many general purpose mature tools and libraries
that we can readily use. These include R, Python’s data tools, and relational
database management systems often (mis)used to perform online analytical
processing. Skimping on the effort required to master these tools in favor of ad
hoc approaches is a mistake. Then, there are also specialized platforms, such as
Alitheia Core [12], _Evolizer_ [13], and Tesseract [14], that can analyze software
engineering data. These can be very helpful if the research question matches
closely the tool’s capabilities. Otherwise, their complexity often makes tailoring
them more expensive than developing bespoke tooling.

Recommendations for tool building

Given the importance of tools in conducting software engineering research, the
most important piece of advice is to hone your tool-building skills. I have
written tools in Perl, the Unix shell, C++, and Java. C++ can be beneficial
when extreme performance is required (in some cases I have run processing jobs
that took many months to complete). Java can be useful when interacting with
other elements in its ecosystem, for example the Eclipse platform. Perl has
the advantage of a huge library of mature components that can cover even the
most specialized needs, such as processing legacy source code control system
(SCCS) files, but the underlying language shows its age. Using the Unix shell
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benefits from the power of the hundreds of tools available under it, and can
be a particularly good choice when the heavy lifting will be performed by such
tools. Otherwise, a modern scripting language, such a Python or Ruby, can offer
the best balance between versatility, programmer efficiency, and performance.
Choose the language that appeals to your taste and requirements, and sharpen
your skills in its use.

Given that many of the tools used are bespoke contraptions rather than mature
software, testing them thoroughly is a must. Thankfully, the practice of unit
testing provides methods for performing this task in an organized and systematic
fashion. According to the software’s change logs, when developing qmcalc 130
unit tests uncovered more than 15 faults. Without these tests some of these
faults might have resulted in erroneous results when the tool was used. Given the
large data sizes processed, testing can often be optimized through appropriate
sampling. This allows the data input and output to be carefully inspected by
hand in order to validate the tool’s operation.

Finally, when developing tools consider sharing the results of your efforts as
open source software and contributing to other similar endeavors. This allows
our field to progress by standing on each other’s shoulders rather than toes. It
is also a practice that aids the reproducibility of research, as others can easily
obtain and reuse the tools used for conducting it. In addition, the knowledge
that your tool will be shared as open source software where the whole world
will be able to see and judge it, puts pressure on you to develop it from the
beginning, not as a quick and dirty throwaway hack, but as the high-quality
piece of software it deserves to be.

Historians have commented that when Rutherford’s glassblower, Otto Baumbach,
was interned during the First World War, experimental physics at the University
of Manchester where he had set up shop were brought to a halt [15]. Such is the
power of tools to advance great science.
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Note

This is a machine-readable rendering of a working paper draft that led to a
publication. The publication should always be cited in preference to this draft
using the reference at the end of this work. This material is presented to ensure
timely dissemination of scholarly and technical work. Copyright and all rights
therein are retained by authors or by other copyright holders. All persons copying
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this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder.
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