
1

Security Protocols over open networks and distributed systems:
Formal methods for their Analysis, Design, and Verification*+

Stefanos Gritzalis

Department of Information & Communication Systems

University of the Aegean

Research Unit, 30 Voulgaroktonou St., Athens GR-11472, GREECE

Tel: +30-1-6456.688, Fax: +30-1-6448.428, Email: sgritz@aegean.gr

Department of Informatics

Technological Educational Institute (T.E.I.) of Athens

Ag.Spiridonos St., Aegaleo, Athens GR-12243, GREECE

Tel: +30-1-5910974, Fax: +30-1-5910975, Email: sgritz@acm.org

Diomidis Spinellis
Department of Information and Communication Systems

University of the Aegean

Samos GR-83200, GREECE

Tel: +30-273-33919, Fax: +30-273-35483, Email:dspin@aegean.gr

Panagiotis Georgiadis
Department of Informatics

University of Athens

TYPA Buildings, Athens GR-15771, GREECE

Tel: +30-1-7257560, Fax: +30-1-7219561, Email: georgiad@di.uoa.gr

Abstract
 Formal methods, theory, and supporting tools can aid the design, analysis, and verification of the secu-
rity-related and cryptographic protocols used over open networks and distributed systems. The most
commonly followed techniques for the application of formal methods for the ex-post analysis and verifi-
cation of cryptographic protocols, as the analysis approach, are reviewed, followed by the examination
of robustness principles and application limitations. Modern high-level specification languages and tools
can be used for automatically analysing cryptographic protocols. Recent research work focuses on the
ex-ante use of formal methods in the design stage of new security protocols, as the synthesis approach.
Finally, an outline is presented on current trends for the utilisation of formal methods for the analysis
and verification of modern complicated protocols and protocol suites for the real commercial world.
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1 INTRODUCTION
 A protocol is a set of rules and conventions that define the communication framework between
two or more agents. These agents, known as principals, can be end-users, processes or com-
puting systems. In cryptographic protocols part of at least one message is encrypted. Security-
related and cryptographic protocols are used to establish secure communication over insecure
open networks and distributed systems. These protocols use cryptographic techniques to
achieve goals such as confidentiality, authentication of principals and services, message integ-
rity, non-repudiation, order and timeliness of the messages, and distribution of cryptographic
keys. Unfortunately, open networks and distributed systems are vulnerable to hostile intruders
who may try to subvert the protocol design goals.

Given such requirements, it is not surprising that there have been several examples of secu-
rity-related and cryptographic protocols that were published, believed to be sound, and later
shown to have several security flaws [1] [2] [3]. After the discovery of flaws in a protocol, the
flaws are often corrected or approaches are being adopted to avoid using the reasoning of the
flawed protocols [4]. These facts increasingly prompted research into the development of
several different formal methods for detecting protocol failures, following an analysis approach
to designing secure protocols. As is the case in the analysis of conventional communication
protocols, two kinds of techniques have been applied to this problem: those based on attempts
to construct inferences using specialised logics based on a notion of knowledge and belief, that
protocol participants can confidently reach desired conclusions, and, those based on attempts
to construct possible attacks using algebraic properties of the algorithms in the protocols.

Inference-construction methods are utilising modal logics similar to those that have been
developed for the analysis of the evolution of knowledge and belief in distributed systems.
These methods are widely used [5] [6] [7]. A number of specific problems are associated with
them [8] [9] [10] [11] [12] related to: the analysis of zero knowledge protocols, the detection
of parallel session multi-role flaws, the transformation of messages and prepositions to ideal-
ised messages, the fact that there is no complete semantics for the logic, and the modelling of
freshness.

Attack-construction methods construct probable attack sets based on the algebraic proper-
ties of the protocol's algorithms. These methods [13] [14] [15] [16] [17] [18] [19] [20] [21]
[22] are targeted towards ensuring authentication, correctness, or security properties; they are
not dependent on the correctness of a proposed logic. Their main disadvantage lies in the big
number of possible events that must be examined.

Attempting to avoid the exponential searches of the attack-construction methods or to ex-
tend analyses to protocols that involve arbitrarily large numbers of participants and messages,
has given rise to a third approach for the analysis of protocol failures. This is the recent ap-
proach of proof-construction methods, which has the potential of being as thorough as attack-
construction in finding possible attacks, while avoiding exponential searches by replacing them
with theorems about these searches. The proof-construction methods are complementary to
inference-construction methods, since they are also based on the problem formalisation through
hypotheses and authentication properties, but rely on problem-specific properties and a specifi-
cation at a finer level of precision. Proof-construction methods formally model the actual
computations performed in protocols and prove theorems about these computations. This
approach has been taken by Snekkenes [23], Bolignano and Paulson [24] [25] [26], and
Brackin [27].

In this paper we provide a review of the state-of-the-art in the application of formal methods
and the development of relevant tools for the analysis, design and verification of security-
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related and cryptographic protocols and outline major trends of research in this area. The
remainder of this paper is organised as follows: in Sections 2, 3, and 4 we describe under the
analysis approach the most commonly followed approaches to the ex-post application of for-
mal methods to already designed cryptographic protocols. In Section 5 we outline the use of
security-related formal specification languages and tools for automatically analysing crypto-
graphic protocols. In Section 6 we present an assortment of helpful principles and limitations
encapsulating relative experience of good and bad practice that can be used in the design of
error-free cryptographic protocols. In Section 7 we discuss recent trends for the ex-ante use of
formal methods in the design stage of new cryptographic protocols using the synthesis ap-
proach. Finally, in Section 8, we outline modern trends for the utilisation of formal methods for
the analysis and verification of modern complicated protocols and protocol suites for the real
commercial world.

2 ATTACK-CONSTRUCTION METHODS
Attack-construction methods can be divided into three sub-categories based on their theoretical
foundation:

• methods based on general purpose validation languages,

• algebraic simplification theoretic model methods, and

• special purpose expert system, scenario based methods.

In the following paragraphs we present these sub-categories in order to describe the basic
features of every method.

2.1 Methods based on general purpose validation languages
These methods analyse a cryptographic protocol as any other program whose correctness they
are trying to prove. This is achieved by specifying the protocol: as a finite-state machine [21]
[22], using predicate calculus [14], or within a process algebra [20] [15].

Sidhu and Varadharajan map the protocol to a finite-state machine [21] [22]. The first
analysis method [21] verifies the basic properties of a number of protocols, detects basic flaws,
but can not detect flaws due to the re-use of old messages as no temporal assumptions are
used. The second method [22] also verifies the basic properties of a number of protocols, but
exhibits a number of problems as the number of states increases. In addition, in order to deal
with flaws related to the re-use of old messages, the authors propose to incorporate into the
analysis data from the session key message contents.

Another approach introduced by Kemmerer, is based on predicate calculus extensions [14].
This method is using the specification language Ina Jo and the Formal Development Methodol-
ogy. Ina Jo [28] is a non-procedural assertion language that is an extension of first-order predi-
cate calculus. Formal specifications written in Ina Jo specify definitions, initial conditions,
transforms, axioms, and criteria. Criteria are used to specify critical requirements for a secure
state. Ina Jo formal specifications can then be executed and verified by related tools, such as
Inatest. This approach has proved to be successful in locating both active and passive attack
flaws, since in both cases the intruder is a separate entity in the model's mathematical frame-
work.

Roscoe proposed a more rigorous approach [20], which is based on modelling all the agents
taking part in the protocol including the communicating principals and the intruder as Commu-
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nicating Sequential Processes (CSP). The proposed method can be used to formalise messages,
traces, intruders, and nonce challenges. The Failures Divergence's Refinement checker (FDR)
tool is a general purpose tool that is used afterwards to determine whether an implementation
refines a specification. FDR takes as input two CSP processes; a specification and an imple-
mentation and tests whether the implementation refines the specification. Initially, this approach
was used to analyse many sorts of systems, including distributed databases and communications
protocols [29]. Recently  it has also been used to analyse security protocols [20] [15]. In the
case of protocol authentication, FDR is used to test whether the protocol correctly achieves
authentication and discover a specific kind of attack of the protocol: this is the case where an
intruder is masquerading as another one within a protocol run. Then, the protocol is adapted in
order to remove the potential flaw and FDR is used to verify that there are no attacks upon a
small system running the protocol. The tests using FDR have proven to be rather fast. How-
ever, the main problem of the effectiveness of this approach in the examination of large scale
systems remains. As FDR requires a user-specified limit on properties such as the number of
objects it will consider, failure to find an attack only asserts that an attack can not be found
within those specified limits.

Roscoe and Goldsmith [30] have described how a fully potent cryptographic protocol at-
tacker can be modelled using a given inference system in CSP. Their approach utilises the
FDR2 tool by Formal Systems. It uses a lazy exploration strategy which examines the subset of
intruder states reachable by the protocol rules effectively exploring the behaviour of the in-
truder in parallel with the protocol’s evolution. A particular advantage of their methodology
lies in its ability to reason about the absence of denial-of-service attacks. Their technique re-
quires the production of a CSP description of the protocol by hand. This has proved not only
time-consuming but error-prone as well, even for experts in this area. For semi-automating the
CSP description, Lowe designed a program named Casper [31]. Casper is an effective front-
end for the aforementioned approach and will be presented in Section 5.

J.C.Mitchell, M.Mitchell, and Stern use a general-purpose state enumeration tool, named
Murφ [32] (pronounced "Mur-phi" from the Greek letter φ) to analyse security-related proto-
cols [19]. The methodology is similar to the approach used in CSP model checking of crypto-
graphic protocols. It involves modelling the protocol and the desired properties in the Murφ
language. Murφ then verifies — using breadth-first or depth-first full state enumeration — that
all reachable states of the system satisfy the specification. Typically, the methodology for ana-
lysing protocols involves the following successive steps: formulate the protocol, add an adver-
sary to the system, state the desired correctness condition, run the protocol for some specific
choice of system size parameters, experiment with alternate formulations, and repeat. Murφ has
been used to demonstrate flaws already known, as TMN [33] and Kerberos version 5 [34]. A
useful aspect of the Murφ approach is that it is feasible to modify a system description to reflect
a situation where one or more pieces of secret information have been compromised.

The standardised language LOTOS [35] [36] has also been used to specify security proto-
cols and cryptographic operations [37] and aid the verification of a protocol’s robustness to
intruder attacks. LOTOS is made up of two main components: a process algebra with a struc-
tured operational semantics and an abstract datatype language. The LOTOS formal language
has been used to model the Equicrypt protocol [38] for conditional access to multimedia serv-
ices and to find some successful attacks against it [39]. LOTOS has also been used by Germeau
and Leduc to specify a registration protocol for the mutual authentication between a Trusted
Third Party and a user [40].
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Another general purpose formal specification language used in this area is ASTRAL [41]
whose strength lies in the specification real-time systems. Dang uses the ASTRAL model
checker [42] to check the ability of satisfaction of critical requirements of an ASTRAL specifi-
cation by enumerating possible runs of transitions within a given time. ASTRAL has been
applied on the Needham-Schroeder public-key authentication protocol [2] and the TMN proto-
col [33]. The ASTRAL model checker missed a bug in TMN, because it required excessive
execution time under the given ASTRAL coding of the specification. Furthermore, the AS-
TRAL approach uncovers simple bugs also uncovered by Murφ tool. The above results are
preliminary, but it is expected that ASTRAL will prove to be more effective in the investigation
of real-time protocols.

All the approaches described above have been shown to discover attacks caused by lack of
explicitness in the protocol messages. Unfortunately, they suffer from the large size of the state
space under exploration. Additionally, if a method fails to find an attack, this only means that
there is no attack on the particular small system analysed, but an attack may exist for some
larger system running the same protocol. So the effectiveness of the aforementioned methods in
the examination of large scale systems remaining to be demonstrated. Lowe [43] presents
sufficient conditions for the protocol and its environment guaranteeing that, if there is no
breach of secrecy when the protocol is run by an appropriate small system, then there is no
breach of secrecy on any system.

Although these general purpose methods have been judged as an important contribution to
the field research has often turned into more specialised directions. The driving force behind
this turn is the strong desire to use reasoning knowledge specific to the cryptography domain.

2.2 Algebraic simplification theoretic model methods
The algebraic simplification methods model a protocol with a collection of rules for transform-
ing and reducing algebraic expressions representing messages. Representative methods in this
category have been proposed by Dolev and Yao [13], and Meadows [16] [17].

Dolev and Yao presented the basic model for the state-machine approach [13]. Under their
model an intruder is in full control of the network being able to read, modify, create, and delete
messages; effectively, the intruder is using the system being attacked as a machine to generate
words (messages). The words follow some rewrite rules based, for example, on the properties
of symmetric encryption. The intruder’s task is to discover a word that should have been se-
cret. Thus, the protocol security problem is transformed into a search based on a term-rewrite
system. This approach was used to develop analysis algorithms for some restricted protocol
classes.

According to the aforementioned work, two models were developed, namely the cascade
protocol model, in which the users can apply cryptographic operations in several layers to form
messages, and, the name-stamp protocol model in which the users are allowed to append,
delete, and check names encrypted together with the plaintext. The name-stamp protocol can
be used to model layers of encryption. The main drawbacks of the Dolev-Yao model are its
failure to model the principals’ ability to remember state information between states, and the
fact that it can only detect protocol deficiencies.

Meadows's NRL Protocol Analyzer [16] [17] is a prototype verification tool, written in
Prolog, that can be used to assist either in the verification of security properties of crypto-
graphic protocols or in the detection of security flaws. The NRL model takes the same ap-
proach as the term-rewrite model of Dolev-Yao. The main difference between the two models
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is that the Dolev-Yao model treats a protocol as a machine for producing words, while NRL
Protocol Analyzer treats a protocol as a machine for producing not only words, but also beliefs
and events. In the NRL model each protocol participant possesses a set of beliefs. These beliefs
are created or modified as the result of receiving messages made up of words, while messages
are sent depending upon both beliefs and messages received. Events represent the state transi-
tions in which new words are generated and beliefs are modified. Thus an intruder who con-
trols the dissemination of messages can use the protocol to produce words, beliefs, and events.

The NRL Protocol Analyzer, in common with the Interrogator model [18] [44] uses a
backward search strategy to construct a path from a specified insecure state to an initial state.
The main difference between the NRL model and the Interrogator stems from their end goals:
the NRL model aims to prove that a protocol is secure while the Interrogator is designed to
search for ways to achieve insecure states without guaranteeing that the protocol is secure if
the search fails. However, unlike the Interrogator model the NRL Analyzer can construct a
single path using an arbitrary number of protocol rounds thereby working in an infinite state
space. This approach allows the NRL Analyzer to discover attacks based on a combination of a
protocol runs.

The NRL Protocol Analyzer has been used successfully to locate a series of previously un-
known flaws in a number of protocols [45] [46], and to demonstrate flaws that were already
known in the literature [47]. The main drawback of the current implementation is the fact that
to keep the state space workable some drastic simplifying assumptions are required. In addi-
tion, as with most rule-rewrite systems, it is not clear how well the system scales as more
complicated algorithms will need to be expressed using an ever increasing set of rules. Another
source of difficulty in using the NRL Protocol Analyzer lies in the generation of lemmas stating
that infinite classes of states are unreachable: these have to be proved by hand. In Section 5 we
describe an effective procedure [48] for making this task easier by automating the generation of
lemmas process.

2.3 Special purpose expert system, scenario based methods
One of the earliest systems that used the Dolev-Yao approach, is Millen's Interrogator Model
[18] [44]. The Interrogator is a software tool written in Prolog that incorporates a protocol
state-transition model. While the abstract model includes the usual state variable for the in-
truder's set of known items, the search algorithms expressed recursively use a state representa-
tion with no explicit mention of the known set.

In addition, the Interrogator has an equation-solving facility for terms using encryption and
other operators used in authentication protocols. This facility called generalised narrowing
implements a multiple-theory approach which handles commutative operators like exclusive-or
and others, such as a limited form of finite-field exponentiation to which prior narrowing algo-
rithms do not apply. Protocol participants are modelled as communicating state machines
whose messages to each other are intercepted by an intruder who can either destroy messages,
modify them, or let them pass through unmodified. Given a final state in which the intruder
knows some word which should be secret, the Interrogator will try — by using operations
defined by non-confluent rewrite systems — all possible ways of constructing a path by which
that state can be reached. If it finds such a path, then it has identified a security flaw, however
its failure to find an attack does not constitute a proof that no attack exists within its model.
The Interrogator model has not uncovered previously unknown attacks in well-known proto-
cols, but it has been able to reproduce a number of already known attacks [47].



7

3 INFERENCE-CONSTRUCTION METHODS
A formal logic model, called BAN logic [5], presented by Burrows, Abadi, and Needham has
been widely used for the analysis of authentication protocols. BAN logic of belief belongs to
the class of KD45 modal logics which practically means that any fact is only a belief and does
not need to be universal in time and space. It assumes that authentication is a function of integ-
rity and freshness, and uses logical rules to trace both of those attributes through the protocol.
There are three main stages for the analysis of a protocol using BAN logic. The first step is to
express the assumptions and goals as statements in a symbolic notation so that the logic can
proceed from a known state to one where it can ascertain whether the goals are in fact reached.
The second step is to transform the protocol steps into symbolic notation. Finally, a set of
deduction rules called postulates are applied. The postulates should lead from the assumptions,
via intermediate formulas, to the authentication goals.

BAN logic has been a success. It has found flaws in several protocols, including Needham-
Schroeder [2] and CCITT X.509 [49]. It has uncovered redundancies in many protocols, in-
cluding Needham-Schroeder, Kerberos [50], Otway-Rees [51], and CCITT X.509 [49]. Many
published papers use BAN logic to make claims about their protocol's security [52] [53].

Inevitably, critiques on various features of the BAN logic have been published. According to
Liebl it is difficult to prove properties of the BAN logic, such as completeness, and the logic
does not take into consideration the release of message contents and the interaction of the runs
at different time of the same protocol [54]. Nessett criticised BAN logic about its claimed goals
of authentication [55]. He constructed a specific example in order to demonstrate the BAN
logic's failure to discover flaws which violate security in a basic sense. Snekkenes examined the
BAN logic's limitation of providing partial correctness proofs [56]. Syverson described com-
mon misunderstandings about BAN logic's goals and explained a problem of informality in
BAN logic's operational semantics [10]. For this reason, specific measures to formalise BAN
logic have been proposed by Mao and Boyd [57]. This formalisation is desirable, not only for
its potential in providing rigorous analysis of security protocols, but, in addition, for its ability
to support computer-aided analysis.

The most criticised points in BAN logic are: the fact that there is no complete semantics for
the logic and the modelling of freshness. The lack of complete semantics may lead to problems
in modelling as some facts may have an unclear meaning. It usually causes problems at the
idealisation step due to ambiguity and vagueness, particularly where a message is idealised into
a formula containing information not present in the message itself. An interesting research goal
to overcome BAN logic's aforementioned drawback would be the development of an efficient
method for authenticating protocol idealisations. This method would presumably be based on
rule-based techniques and would result in a way to refine a big protocol message transforma-
tion step into smaller, simpler, and easier to understand steps. This method would reduce the
possibility of error occurrence in the informal protocol idealisation steps and would increase
the ease of diagnoses of lower-level design flaws. Mao and Boyd have worked towards this
goal [58], but their work does not cover protocols using public-key algorithms nor does it
include a theoretic proof of the soundness of the proposed idealisation rules. Regarding the
modelling of freshness it is not possible — as is the case in most modal logics — to distinguish
between freshness of creation and freshness of receipt. The abstract level of BAN logic models
results in difficult to assess hypotheses and protocol descriptions. According to Syverson [59],
BAN logic's results seem to be less reliable than NRL Protocol Analyzer's, but are easier to
come by. Other published logic systems are designed as extensions to BAN logic [6] [60] [9]
or correct perceived weaknesses [56] [57].
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A successful, but rather complicated approach called GNY logic, was proposed by Gong,
Needham, and Yahalom  [6] increasing the scope of BAN logic. GNY logic aims to analyse a
protocol step-by-step, making explicit any assumptions required, and drawing conclusions
about the final position it attains. This logic offers important advantages over BAN logic. The
GNY approach places a strong emphasis on the separation between the content and the mean-
ing of messages which increases consistency in the analysis and introduces the ability to reason
at more than one level. In GNY logic, principals can include in messages data which they do
not believe in, but just possess. It is also possible to express the ability of a recipient to identify
the expected messages and allows one to determine that certain messages are not replays of a
recipient's own previous messages in a given session. GNY logic has a number of drawbacks: it
addresses only authentication and is much more complicated and elaborate than other methods
as it has many rules which have to be considered at each stage [61].

A Higher Order Logic (HOL) theory [62] formalising an extended version of GNY, named
BGNY logic has been introduced by Brackin [8]. This belief logic is used by software that
automatically proves authentication properties of cryptographic protocols. Similarly to GNY
logic BGNY addresses only authentication. However, BGNY extends the GNY logic including
the ability to specify protocol properties at intermediate stages and being able to specify proto-
cols that use multiple encryption and hash operations, message authentication codes, hash
codes as keys, and key-exchange algorithms.

Another logic, called SvO, presented by Syverson and van Oorschot [7], is designed to
capture the features of extensions and variants of four logics, namely BAN, GNY, AT [63],
and vO [60] in a single unified framework. In addition, the authors provide model-theoretic
semantics with respect to which the logic is sound. The SvO logic was intended to encompass
the reasoning of these other logics while providing a rigorous understanding of its formal ex-
pressions. The SvO logic is considered to be simpler to use and more expressive than any of
the logics from which it is derived.

Kailar proposes a special-purpose logic to be used for the analysis of communication proto-
cols that require accountability [64], such as those for secure electronic transactions. This logic
looks at what can be achieved without making any assumptions about freshness. A set of pos-
tulates which are applicable to the analysis of proofs in general and the proofs of accountability
in particular are proposed. In the same framework, an authentication logic presented by Kessler
and Neumann [65] can analyse the accountability of transactions in the framework of electronic
commerce protocols. Their work is based on the AUTLOG semantics developed earlier [9].
New rules and predicates are used to model accountability and to prove that the new calculus is
correct with respect to the formal semantics.

Wedel and Kessler also propose a logic for the analysis of authentication protocols [66]
providing formal semantics for proving its soundness. This logic can handle a wide variety of
cryptographic mechanisms using a minimum of notation. In their approach, the elimination of
the formuli out of the idealised messages leads to a clear distinction between the protocol itself
and the assumptions about it.

4 PROOF-CONSTRUCTION METHODS
As mentioned before, inference-construction methods do not address secrecy, often lack clear
semantics, and  it is sometimes difficult to say exactly what a belief-logic proof actually proves.
On the other hand, attack-construction methods may have to search spaces that grow expo-
nentially with the size of the protocol, so the time and space they require can easily exceed all
available resources.
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In order to confront the aforementioned drawbacks, Bolignano has proposed an approach
targeting the generation of human-readable proofs [25]. Such proofs can be used as part of a
vulnerability analysis or formal code inspections. In order to achieve this goal specific proper-
ties of the problem are used to formalise the requirements and simplify the proofs. The ap-
proach places particular emphasis on the clear description of the problem providing a clear
separation between reliable and unreliable principals, the precise description of their roles,
beliefs, and control structures, the imposition of sequencing constraints, the expression of
authentication properties using temporal features, and the formalisation of algorithm properties.
The use of powerful invariants and the axiomatisation of intruder knowledge result in a verifi-
cation process whose conciseness is comparable to that of modal based approaches. The proc-
ess can be automated within a framework of typed logics using the Coq proof assistant [67].

Paulson has independently developed a similar approach synthesising the infer-
ence-construction method idea of protocol message guarantees and the attack-construction
method notion of events [24] [26]. Unlike Bolignano who models the states of the four agents
A, B, S, and the Spy, Paulson defines protocols inductively as the set of all possible event
traces. Agents receiving a trace can forward it and extend it according to the protocol rules
while remaining agnostic to the message’s true sender. This approach allows the modelling of
both attacks and key losses. Again, the process is partially automated using the Isabelle theo-
rem prover [68].

Within the same framework, Schneider presents a general approach for the analysis and
verification of authentication properties in the language of CSP [69]. The focus of this research
work is the development of a specific theory targeted towards the analysis of authentication
protocols and built on top of the general CSP semantic framework. The CSP syntax provides a
precise way to describe authentication protocols in terms of the messages accepted and trans-
mitted by the individual protocol participants. This approach aims to bridge the gap between
the ability to express authentication protocols in a precise way and the facility to reason for-
mally about the properties they exhibit. The aforementioned theory has been successfully ap-
plied [70] to the modelling and analysis of the Zhou and Gollmann fair non-repudiation proto-
col [71].

More recently, Fabrega, Herzog, and Guttman introduced the notion of a strand space [72]
[73]. They propose a model and a set of proof methods for cryptographic protocols along the
lines of the NRL Protocol Analyzer, Schneider's work, and Paulson's inductive definitions. A
strand is defined as a sequence of events within the domain of a security protocol representing
the actions of legitimate party or a penetrator. Defining a strand space as a graph of strands
allows protocol correctness to be expressed as connections between different kinds of strands.
In conjunction with the aforementioned formalism the authors use the concept of ideals to
prove bounds on a penetrator's capabilities independently of the security protocol being ana-
lysed. This approach is characterised by the simplicity of the model and the effortless produc-
tion of reliable protocol correctness proofs. An interesting concept of this method is the picto-
rial approach [74] which is used as a heuristic for stating and proving correctness results.
Strand spaces can help users draw informative pictures of security protocols, attacks, correct-
ness theorems, and crucial steps in the proofs; thereby focusing on the protocol goals and their
satisfaction.

Finally, another related approach is the implementation of the protocol security theory de-
veloped by Snekkenes [23] within the HOL theorem prover [62]. The prover works on an
explicit identification of the participants’ message extractions, computations, tests, and actions
exploiting the algebraic properties of the cryptographic algorithms used. The theory also dis-
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tinguishes participants from the roles they play, thereby modelling attacks in which an attacker
leads legitimate participants to think they are at different stages in the protocol than they really
are. Snekkenes has also developed proof tools that are based on large amounts of human input.

5 FORMAL SPECIFICATION LANGUAGES AND TOOLS FOR
AUTOMATICALLY ANALYSING CRYPTOGRAPHIC PROTOCOLS

The techniques outlined above can not be easily applied by analysts other than the developers
themselves. The main reason for this difficulty is the fact that the protocols have to be re-
specified for each technique, and it is not easy to transform the published description of the
protocol into the required formal system. So, some tools are designed as automatic translators.
The input to any such translator still requires a formally-defined language, but it can be made
similar to the message-oriented protocol descriptions that are typically published in the litera-
ture. This introduces the idea of designing a single common protocol specification language
that could be used as the input format for any formal analysis technique.

Meadows [48] describes a heuristic procedure for automating language generation using the
NRL Protocol Analyzer. In contrast to other methods, where languages are defined by hand
and unreachability properties are automatically proved, this approach combines the language
generation with the unreachability proof. By using this approach the languages are efficiently
created and are also amenable to automated analysis thereby improving the performance of the
NRL Protocol Analyzer.

Brackin specifies a simple Interface Specification Language (ISL) and describes an Auto-
matic Authentication Protocol Analyzer (AAPA) which can automatically either prove that
specific protocols satisfy the desired properties, or identify precisely where these proof at-
tempts fail [75] [76] [77]. The AAPA produces its proofs using the BGNY protocol analysis
belief logic implemented in the HOL family of proof tools. The AAPA can be used either alone
or as part of the Convince system [78]. The Convince tool facilitates the modelling and analysis
of cryptographic protocols using a HOL theorem prover with automated support. This tool,
developed by Lichota, Hammonds, and Brackin implements BGNY belief logic. It consists of
the AAPA together with a graphical user interface that automatically creates ISL specifications
from user-created graphical protocol representation.

The time and space required to do an AAPA analysis grow quadratically with the size of the
protocol making it possible for the AAPA to quickly analyse large and complicated protocols.
A creditable performance to evaluate the results of AAPA includes the analysis of fifty two
protocols from "A Survey of Authentication Protocol Literature" by Clark and Jacob [79]. This
is a continually updated library of protocols analysed in the protocol-failure literature. As men-
tioned before, the time for protocol analysis proved to be quite brief; an experienced user
needed eighty working hours to model and analyse fifty two protocols. However, AAPA
misses some failures, most notably non-disclosure failures, due to the fact that BGNY belief
logic makes authentication deductions by assuming that there have been no non-disclosure
violations. Nevertheless, AAPA remains one of the most effective modern tools aiding the
design and analysis process.

Another promising language named Common Authentication Protocol Specification Lan-
guage (CAPSL), partly inspired by ISL, is being developed by Millen [80]. CAPSL is proposed
as a single common protocol specification language that can be used as the input format for any
formal analysis technique, such as Prolog state-search analysis tools [18], the NRL Protocol
Analyzer [16] [17], model-checking with FDR [15], and HOL [8]. The main objectives of the
CAPSL design are usability, abstraction, completeness, extensibility, parsability, and scalability.
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A program named Casper, developed by Lowe [31], semi-automatically produces the CSP
description from a more abstract description, thus greatly simplifying the modelling and analy-
sis process. Casper compiles high level protocol descriptions, written following a notation
similar to the notation used in the academic literature, into CSP scripts for checking on FDR2.
Casper does not yet cover all the features found in security protocols, but has been applied to a
number of known protocols, such as the Andrew protocol, the Kerberos protocol, the CCITT
X.509 protocol, and the Yahalom protocol [5]. Some of these case studies are available via the
Casper Web page [81]. The main differences between CAPSL and the Casper language stem
from the fact that a Casper input file has to define not only the protocol itself, but also the
system to be checked; CAPSL defines only the protocol. The most important consequence for
Casper is that when designing the input syntax one has to provide a mechanism for defining the
agents who are taking part in the system, the specific roles they played, and the data items they
used.

Recently, Abadi and Gordon developed the Spi calculus language to be used for specifying
cryptographic protocols [82]. The Spi calculus is an extension of the Pi calculus [83] an exist-
ing language for specifying mobile computation which does not include any constructs for
encryption and decryption. Within Spi calculus protocols are represented as processes while
their security properties are represented using the notion of protocol equivalence. The Spi
calculus approach resembles the modal logic reasoning about channel utterances and the char-
acterisation of knowledge within a state-machine environment. It differs however from other
approaches by representing integrity and secrecy as equivalencies and defining the environment
as a Spi calculus process.

Finally, Brackin proposed a tool targeted towards automating proof-construction [27] [84].
The HOL theory Protocol Description Logic (PDL) formalises the low-level details of the
actions performed by processes executing a protocol. PDL is not sufficiently expressive to
formalise all protocols specified in CAPSL [80]. The main advantage of Brackin's approach is
that the complexities that arise in proving desired belief inferences will not need to be consid-
ered again once these inferences are proved. Thereby protocol analyses using PDL are not only
as trustworthy as those produced by attack-construction methods, but also comparable in
speed to those performed using inference-construction methods.

6 ROBUSTNESS PRINCIPLES
Aiming towards the design of an effective cryptographic protocol, a complementary approach
is to try to encapsulate experience of good and bad practice into empirical rules. The robust-
ness principles are therefore helpful, in that adherence to them contributes to the simplicity of
protocols and avoids a considerable number of published confusions and mistakes. Anderson
and Needham [85] propose a number of robustness principles, and Abadi and Needham [86]
[87] introduce complete analyses of desirable protocol properties and relevant limitations.
Some of them are mentioned below:

• be very clear about the security goals and assumptions,

• be clear about the purpose of encryption (secrecy, authenticity, etc.); do not assume that its
use is synonymous with security,

• be careful that your protocol does not make some unexamined assumption about the prop-
erties of the underlying cryptographic algorithm,

• be sure to distinguish different protocol runs from each other,
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• do not assume that a message you receive has only a particular form, even if you can check
this,

• if timestamps are used as freshness guarantees by reference to absolute time, then the differ-
ence between local clocks at various machines must be less than the allowable age of a mes-
sage deemed to be valid; furthermore, the time maintenance mechanism everywhere be-
comes part of the Trusted Computing Base,

• where the identity of a principal is essential to the meaning of a message, it should be men-
tioned explicitly in the message,

• sign before encrypting; if a signature is affixed to encrypted data, then one cannot assume
that the signer has any knowledge of the data; a third party certainly cannot assume that the
signature is authentic, so non-repudiation is lost.

It is remarkable that, in many cases, following one design principle will sometimes lead to
violating another. This is almost expected, since we have to deal with empirical rules. In addi-
tion, even following all the above rules will not guarantee a sound design. Many authors have
considered the question of what are appropriate goals in the context of protocol analysis. Ac-
cordingly, Boyd [88] reviewed some design goals in authentication protocols and proposed a
classification of them: intentional and extensional goals. Intentional goals are generally con-
cerned with ensuring that the protocol runs correctly as specified, while extensional goals are
concerned with what the protocol achieves for its participants. It has been suggested that at-
tacks should be measured by whether or not they violate extensional specifications even if
intentional ones have been used to find the attacks in the first place. Boyd proposes a hierarchy
of extensional protocol goals which includes the major proposed goals for key establishment.
He furthermore demonstrates how these extensional goals can be exploited to motivate design
of entity authentication protocols.

Concluding, it is becoming widely accepted that both formal methods and structured design
rules must be taken into account in a complementary way during all phases of a protocol design
for achieving effective and reliable cryptographic protocols.

7 FORMAL METHODS FOR PROTOCOL DESIGN
The design of secure cryptographic protocols is a very complex and difficult process. Until
recently, researchers were orientated towards the use of formal methods for the analysis and
verification of existing protocols. These methods have proved successful at discovering flaws
with existing protocols, sometimes previously unrecognised ones. Criticisms on formal verifi-
cation include the fact that key distribution protocols, claimed to be secure under BAN logic,
have already been broken [89]. Furthermore, BAN-like logics do not prove that a weakness in
the protocol implies that the cryptoscheme, on which it is based, can be broken. Therefore, a
great deal of doubt remains as to whether any of the existing techniques is sufficient to provide
a proof that a given protocol is correct. This situation has a fair analogy in the verification
process of general purpose computer programs, where reliable testing techniques allow many
bugs to be found, but will not provide a basis for complete proof of correctness. Therefore, it
would be a prudent and mature trend, to design specific methods and implement tools, in order
to aid the initial correct design of cryptographic protocols. The incorporation of formal meth-
ods into design can be implemented in various ways.
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One approach is to develop and use protocol design methodologies that lend themselves to
formal method analysis [90]. This is exemplified by the modular design proposed by Heintze
and Tygar [91]. Using protocol security reasoning tools and a composition theorem they can
state sufficient conditions for combining two secure protocols to form a new one with similar
properties. Based on secret-security and time-security notions they can provide examples of
how unmet conditions result in an insecure protocol.

Another approach is based on the development of design principles which are used to de-
velop protocols whose security is easy to evaluate. To satisfy this goal Gong and Syverson
propose the notion of fail-stop protocols [92]. The main idea came from earlier work where
they proposed the concept of a fail-stop processor, which, when failing, stops before any effect
is visible to the outside environment [93]. Similarly, a fail-stop protocol halts in response to
active attacks interfering with the protocol execution. Given such a protocol its security analy-
sis involves only the examination of possible passive attacks such as eavesdropping. It is
therefore much easier to conclude whether the secrecy assumption can be violated. The sug-
gested proof methodology for a fail-stop protocol comprises three phases: the verification that
the protocol is fail-stop, the validation of the secrecy assumption, and the application of BAN-
like logics. The proposed methodology applies BAN-like logics because even for a fail-stop
protocol, the residue from its execution may be useful to an attacker [55]. Another encourag-
ing point for this methodology is that the specifications of fail-stop protocols satisfy some of
the main prudent engineering principles from [86] and [87]. Accordingly, the GNY logic is
used to analyse a fail-stop protocol the proof complexity can be dramatically reduced.
According to the researcher’s team investigation, many existing protocols proved to be fail-
stop [92]; therefore the new notions are not too limiting.

The most prominent approach in this area seems to be the layered approach proposed by
Meadows [90]. This approach can be used together with Heintze and Tygar's approach [91]. It
is based on a stack of models at different levels of abstraction. As a first step, the protocol
designer uses a relatively abstract model to construct and verify the security protocol. If this
protocol is correct at that top layer, the designer focuses on a more detailed model which
refines the abstract one. The repeated execution of this process leads to the final production of
a detailed specification. Much of the existing work on requirements specifications [11] has this
specific flavour. For the application of BAN Logic [94], the approach is based on a parser that
translates members of a limited class of protocol specifications into BAN Logic.

Within this framework, Rudolph introduces an approach for designing an abstract model for
cryptographic protocols that can be used as the top layer of a layered design method [95]. The
main idea of Rudolph is the usage of Asynchronous Product Automata. The whole design
process starts with a relatively abstract model at the top layer and ends in a refined specifica-
tion that can be proven to be an implementation of the top level. This model reaches a higher
level of abstraction than the model presented in the work of Heintze and Tygar [91] through
the use of logical secure channels instead of encryption.

The notion of channels is also utilised by Buttyan, Staaman, and Wilhelm to present a simple
logic for authentication protocol design [96]. These channels are abstract views of various
types of secure communication links between principals. The way channels are used is similar
to the use of Pi calculus channel primitives [83]. The proposed Simple Logic preserves the
simplicity of BAN logic and adopts some concepts from GNY logic. It consists of a language
and a small number of inference rules. The language is used to describe assumptions, events,
and the protocol goals. The inference rules are used to derive new statements about the system.
The goal of the analysis is to construct a witnessing deduction, which is a derivation of the
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goals from the assumptions and the formal protocol description. The protocol is correct in the
case where such a deduction exists. The lack of a witnessing deduction means that the protocol
may not be correct.

Boyd and Mao proposed another technique for designing key exchange protocols [97]
which are guaranteed to be correct in the sense that a specified security criterion will not be
violated if protocol principals act correctly. This technique is developed from basic crypto-
graphic properties that can be expected to be held by a variety of cryptographic algorithms.
Protocols can be developed abstractly and any particular type of algorithm that possesses the
required property can then be used in a concrete implementation.

Gollmann [98] suggests that the design of authentication protocols has proven to be error
prone partly due to a language problem. The objectives of entity authentication are usually
given in terms of human encounters while we actually implement message passing protocols.
The author proposes various translations of the high level objectives into a language appropri-
ate for communication protocols.

Several researchers believe that in the near future, more effort will be spent on designing se-
cure protocols and less on formal verifications. As expected, this trend has received criticism
similar in nature to that expressed towards the use of formal methods in program design and
implementation [99]. Specifically, Meadows argues [90] that design specifications do not
guarantee that protocols will meet security goals that were not foreseen by the design ap-
proach, that the protocols designed are sometimes impractical, and that — due to the impreci-
sion of design principles — flawed protocols may in any case be designed.

8 CONCLUSIONS
We presented an overview of the modern trends in the application of formal methods for the
analysis and verification of cryptographic protocols. The three method families we described
are useful at various levels of abstraction. The more abstract models can be used efficiently at
earlier points in the design stage, when implementation details have not yet been decided. A
protocol analysis toolkit-based usage scenario can be described as follows [24] [25] [90]:
initially, use an inference-construction method, like BAN, to determine what the role of each
message of a protocol should be and to ensure freshness properties; then, use an attack-
construction method, like NRL Protocol Analyzer, for finding simple attacks quickly; and
finally, utilise a proof-construction method to investigate deeper properties with a modest
amount of effort.

Furthermore, some areas where current research is conducted have emerged. Bolignano is
working towards investigating the use of his approach in the context of an ITSEC evaluation.
Another interesting research direction is the investigation of the potential integration of meth-
ods like the NRL Protocol Analyzer and the Interrogator model within the methodology of fail-
stop protocols in the cases of protocols that do not satisfy the fail-stop requirements [100]. To
ease and extend the use of the Murφ tool it would be useful to achieve automatic translation of
a higher-level protocol specification language such as CAPSL into Murφ and combine analyses
using exhaustive finite-state analysis and formal logic methods.

Moreover, the research community is also working towards developing tools that take easy-
to-write specifications of protocols and the expected properties and quickly perform formal
analyses checking for failures of these protocols to achieve their desired properties. AAPA [75]
and CAPSL [80] seem to be the most promising approaches to bridge the gap between the
typical informal presentations of protocols given in research papers and the precise characteri-
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sations required to conduct formal analysis. Representative research and development attempts
for designing effective tools, include the work of Brackin for a new, currently unnamed, proto-
col analysis tool which, unlike AAPA, will use CAPSL rather than ISL as its input language
and use the Protocol Description Language as the basis for its proofs. In addition, the co-oper-
ation of Millen, Meadows, and Brackin has resulted in a — yet unpublished — multi-purpose
CAPSL translator [84]. This translator will be able to translate CAPSL protocol specifications
into a HOL theory to be used with PDL, into input of the NRL Protocol Analyzer, or into
human-readable algorithm descriptions.

An interesting research trend, lies in the fact that many current activities use formal methods
for analysing and verifying modern protocols and protocol suites to be used in the commercial
world. These suites consist from a set of single protocols which interact with each other caus-
ing, previously unknown, potential vulnerabilities. Within this context Brackin describes how
the AAPA works to formally analyse two large commercial protocols [101]: the main- and
coin-sequence protocols developed by CyberCash, Inc., Murφ has been used in order to analyse
the SSL 3.0 — a complex de facto standard for achieving secure Internet communication —
handshake protocol [102], and Paulson's Inductive method has been applied [103] to analyse
the descendant of SSL 3.0, known as TLS Internet Protocol. Recently, Paulson's Inductive
method has also been exploited [104] [105] to formalise Kerberos version IV, a real-world
timestamp-based protocol. In this work, a complete formalisation of the whole protocol is
achieved, and several guarantees about its entangled operation are proved using the Isabelle
theorem prover. Furthermore, Bolignano generalised [106] the approach his earlier approach
[25] in order to achieve the verification of electronic payment protocols, such as C-SET and
SET. The NRL Protocol Analyzer has also been utilised by Meadows for the analysis and
verification [107] of the Internet Key Exchange protocol, IKE (formerly ISAKMP/Oakley)
[108].

Finally, from the security protocol designer’s point of view, the research community, work-
ing towards developing more effective techniques to ex-ante design protocols that are guaran-
teed to be reliable and correct in the first place, has implemented the synthesis approach. Most
of the recent research in this area is focused on the application of the notion of channels in
order to effectively implement the layered approach.
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