
How do we obtain software compo-
nents? In a panel at TOOLS USA 1994,
Eric Aranow nicely outlined the basic
question: “Is it nature or nurture?” In
other words, are components born—
devised from the start as components—
or are components made? That is to say,
have they evolved from program ele-
ments that may have been originally built
for other purposes? Although some panel
members argued for the nature view, it
was clear to everyone that the nurture
process of maturing candidate compo-
nents until they are fully satisfactory can
be invaluable.

In this column, Diomidis Spinellis
describes a process of component mining.
His source of candidate components—his
“mine”—is a set of highly respected com-
ponents from an earlier generation: the
famous Unix utilities. He shows how to
identify the most promising of these can-
didates and re-encapsulate them in com-
ponents that satisfy today’s views of
component-based development, based on
the principles of object technology.

—Bertrand Meyer

T
he wide adoption of the OO
paradigm and recent technology
advances like Enterprise Java-
Beans and ActiveX controls has
generated renewed interest in

component-based software engineering.

But an increasingly important issue in
the development process is the reliability
and availability of the source that sup-
plies these components.

As a relatively new field, component
mining is the process of extracting

reusable components from an existing
component-rich software base. The most
effective component-mining technique is
one in which the process of mining is
clearly defined. This column outlines a
method I use for mining components
from applications that are typically exe-
cuted as Unix processes.

THE UNIX MINING FIELD
Unix developers have created a large

collection of applications that provide a
single service—such as comparing two
files, searching for a pattern, or deliver-
ing e-mail—without requiring user inter-
action. Many of those programs have
been implemented using state-of-the-art
algorithms, have been stress-tested for
decades, and have had their interfaces
standardized. Furthermore, many of
these programs are freely available in
source code form through open-source
initiatives like GNU and BSD.

You could argue that these programs
have always been used as components,
which you basically glue together using a
Unix shell. Although this might be true
in one sense, current trends call for a
component model that is much richer
than the one provided by the Unix shell.

Systems using ActiveX or JavaBeans
components

• are based on OO languages, 
• can provide a variety of efficient com-

ponent-composition approaches, 
• are often integrated with GUI envi-

ronments, and 
• are supported by modern develop-

ment environments.

In contrast, the Unix shells largely

• lack facilities for programming in
the large,

• support only the serial pipe compo-
sition model,

• are designed for character-based ter-
minals, 

• do not provide compilation support,
and 

• offer only rudimentary debugging
facilities.

A process for packaging existing pro-
grams as object components can elevate

Explore,
Excogitate,

Exploit:
Component Mining

Diomidis Spinellis, University of the Aegean

114 Computer

Co
m

po
ne

nt
 a

nd
 

Ob
je

ct
 T

ec
hn

ol
og

y

Editor: Bertrand Meyer, EiffelSoft, ISE
Bldg., 2nd Fl., 270 Storke Rd., Goleta, CA
93117; voice (805) 685-6869; ot-column@
eiffel.com

An increasingly 
important issue in the
development process 
is the reliability and
availability of the

source that supplies
components.



the individual reuse of specific algorithms
or implementations to an organized com-
ponent-mining operation.

THE COMPONENT MINING PROCESS
The process of mining components

and subsequently using them within an
application domain can be divided into
the three phases illustrated in Figure 1:

• exploration,
• excogitation, and
• exploitation.

These phases roughly correspond to
the selection, specialization, and integra-
tion dimensions of typical software reuse
methodologies.

During the exploration phase, you
elicit component requirements and—on
the basis of component abstractions—
select components. In this phase, the
selected components and the system
architecture determine your correspond-
ing interface requirements.

The excogitation phase deals with the
encapsulation of the components that
have to be mined and the implementa-
tion of suitable interfacing glue for con-
necting components with the rest of the
system. The abstract nature of packaged
components and interfaces means that
many of them can be stored in a reposi-
tory for future reuse or retrieved from
this repository for direct reuse.

Finally, during the exploitation phase,
you use the reused and newly encapsu-
lated components and corresponding
interfaces to create a functioning system.

The excogitation and exploitation
phases are composed of three basic activ-
ities:

• component encapsulation, where an
existing stand-alone program is con-
verted into a component object;

• component glue implementation,
where special-purpose components
provide a uniform and reusable
interfacing mechanism between the
mined components and the rest of
the system; and

• component use and composition,
where component objects are com-
bined to form new structures and
components.

COMPONENT ENCAPSULATION
Component encapsulation creates a

component object—usable within an
object-based framework—out of a stand-
alone, noninteractive program. Encap-
sulating filter-style programs that
transform one data stream into another
is a fairly straightforward process.
Programs requiring limited user interac-
tion can be encapsulated using a suitable
wrapper, while programs that have a
graphical front end are—in most cases—
poor candidates for encapsulation.

Encapsulated Unix components typi-
cally process input data streams and gen-
erate output streams based on para-
meters that modify their behavior. As an
example, the diff component (which I
implemented as an encapsulated version
of the Unix command by the same name)
processes two textual input streams and
generates a third stream that contains
their differences. Among other things,
the diff parameters specify what output
format to use, what algorithm to use, and
how to handle white space.

Encapsulating a stand-alone program
makes it directly usable in object-based
frameworks. And specifying a standard
filter-type component class allows repet-
itive aspects of the encapsulation to be

reused. You can even specify a class to
automate the encapsulation, but doing
so means you are bound to a generic
component interface.

Component encapsulation allows you
to experiment with different component
implementations that may vary in terms
of performance, cost, licensing restric-
tions, and resource use.

As an example, thread-based imple-
mentations conforming to a framework’s
structuring conventions offer increased
efficiency but at a higher implementation
cost. A thread-based implementation can
advantageously use wrapper libraries to
transform existing OS call primitives into
interfaces to the encapsulation code.

COMPONENT GLUE IMPLEMENTATION
Apart from singular options control-

ling an encapsulated component’s oper-
ation, the bulk of the data is transferred
to and from the component through
streams. Typical streams are formed from
the stand-alone program’s standard input
and output as well as any other user-spec-
ified files. To use a component effectively,
these streams need to be connected to
existing data sources such as in-memory
data structures, files, relational data-
bases, procedures producing dynamic

September 1999 115

Figure 1. The component mining and exploitation process.

Component
encapsulation

Reuse

Excogitation

Component
glue

implementation

Component
requirements

Interfacing
requirements

Component
use and

composition

Exploration Exploitation

Mine

Build

Mine

Reuse

Build



used to provide efficient access to offline
data, GUIs, and a multitude of other
component-based services. A spelling
checker, for example, can be easily con-
structed by composing the translate, sort,
unique, and other components while glu-
ing together the editbox and listbox com-
ponents to provide the GUI.

Many of the problems solved under the
Unix programming environment using
shell programming constructs and
pipelines can be transformed to compo-
nent composition structures. Of particu-
lar relevance are sequences of filter-type
components, where each one receives a
data stream, performs some operations on
it, and forwards it to another filter to per-
form some other operations. Examples
include pipelines of tools that process text,
images, sound, and program code.

The components composed are object
instances of either active process compo-
nents—that are connected to existing
data sources and sinks—or glue compo-
nents that provide such sources and sinks.
By using component composition, it is
possible to implement sophisticated com-
ponent interaction topologies. It is also
possible to package together existing
components to create new, reusable ones.

data, GUI widgets, and other compo-
nents. These connections are all handled
by the glue components.

A glue component class needs to be
designed whenever a new type of exist-
ing data source or sink needs to be linked
to an encapsulated component. While
glue components can be used to provide
extra functionality for linking compo-
nents together, they also allow the inte-
gration of encapsulated components
within an object-based framework.

Suitable glue components can be used
to provide efficient interfaces to system
data, which can obviate the cumbersome
file-based approaches typically used to
interface stand-alone programs. The
existence of glue components allows the
designer to experiment with different
data sources and sinks without having to
modify the rest of the system structure.

COMPONENT COMPOSITION
Encapsulated components do not

operate in a vacuum. They are composed
to create more powerful components and
are integrated within an object-based sys-
tem to provide more specialized services.

The composition of encapsulated com-
ponents with component glue can be

I have used the component mining pro-
cess to encapsulate a number of Unix
tools using Perl’s OO features. I used a

simple wrapper approach that required
only a modest implementation effort. By
using the encapsulated components, my
colleagues and I have been able to code
applications intuitively and naturally.

The component mining process has
proven to be addictive. The ease of encap-
sulation, the limitless possibilities of object
structuring, and the flexibility of using a
high-level language to interact with the
components have opened new ways to
leverage existing tools and applications. I
am currently experimenting with more
efficient encapsulation techniques using
threads to construct image processing
applications with encapsulated Unix
tools.

I would like to see component mining
extended to other mining fields, which
would be supported by appropriate do-
main-specific patterns and languages. ❖

Diomidis Spinellis is an assistant pro-
fessor in the Department of Information
and Communication Systems at the Uni-
versity of the Aegean. Contact him at
dspin@aegean.gr.

Component and Object Technology

Our members write important IT standards. Our members
wrote IEEE 802.3, the standard for Ethernet, the most widely

deployed LAN. But technology networks are not the only kinds
developed here.

Grow YGrow Your Career • Find Out How @our Career • Find Out How @
http://computer.org/standard/index.htm

Set IndustrSet Industry Standary Standardsds

Did You Know?
Right now, over 200 Working Groups 
are drafting IEEE standards.

Did You Know?
Right now, over 200 Working Groups 
are drafting IEEE standards.


