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Abstract

The general design problem in serial production lines concerns the allocation of resources such
as the number of servers, their service rates, and buffers given production-specific constraints,
associated costs, and revenue projections. We describe the design of exPLOre: a modular, object-
oriented, production line optimization software architecture. An abstract optimization module can
be instantiated using a variety of stochastic optimization methods such as simulated annealing
and genetic algorithms. Its search space is constrained by a constraint checker while its search
direction is guided by a cost analyser which combines the output of a throughput evaluator with
the business model. The throughput evaluator can be instantiated using Markovian, generalised
queueing network methods, a decomposition, or an expansion method algorithm.

Keywords: Manufacturing systems; production lines; stochastic modeling, analysis; performance
evaluation, optimization.
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1 Introduction

Serial production lines form the heart of many manufacturing systems. Their optimal design is subject
to specific constraints, associated costs, and revenue projections. Much of the research in this field
concerns the design of these manufacturing systems when there is considerable inherent variability
in the processing times at the various stations, a common situation with human operators/assemblers.
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The general design problem in serial production lines involves the allocation of resources such as the
number of servers, their service rates, and buffers at each of the servers. These problems are called,
respectively, the server allocation, the workload allocation, and the buffer allocation problems. The
problem mentioned above is a nonlinear stochastic problem. One of its features which makes it very
challenging to solve is that no known closed-form expression for estimating the throughputs of the
lines exists. This characteristic makes it very difficult to control the design variables as a function of
the variation in the objective function.

For a systematic classification of the relevant works on the stochastic modeling of these and other
types of manufacturing systems (e.g., transfer lines, flexible manufacturing systems (FMS) and flex-
ible assembly systems (FAS)), the interested reader is referred to a review paper by Papadopoulos
and Heavey [1] and some recently published books, such as Askin and Standridge [2], Buzacott and
Shanthikumar [3], Gershwin [4], Papadopoulos et al. [5], Viswanadham and Narahari [6], and Altiok
[7].

The difficulties of the problem have led us towards the deployment of an arsenal of different
methods for determining the optimal design of the production line. These methods involve both
the estimation of line throughput and the calculation of the optimal line design variables. In this
paper we describe the design of exPLOre: a modular, object-oriented, production line optimization
software architecture. Up to now we have used the system for solving the buffer allocation problem in
production lines with well over 100 stations in series [8], and for investigating the allocation buffers,
servers, and service rates in production lines with up to 60 stations in series.

The rest of this paper is organised as follows: in section 2 we present the mathematical model of
the production line, in section 3 we describe the exPLOre architecture, in section 4 we present the
exPLOre prototype implementation and some initial results, while section 5 concludes the paper with
a description of our future plans.

2 The Production Line Model

The production line decision model we used is based on the optimal allocation of its constituent
resources namely: the number of servers, their service rates, and buffers at each of the servers. The
effect of the number of servers and the service rates on the production throughput and cost is obvious:
an increased number of servers or service rate can be readily associated with a given cost and will
increase the line throughput by a specific measure. The effect of the production line buffer allocation
in terms of throughput and cost is more subtle. The main purpose of buffers in production or flow
lines is to give each stage of a system some degree of independence from the rest of the system. If
buffers were non-existent then the only way two connected workcenters could operate would be in
perfect synchronization; a utopian situation. If there were no buffers between two workcenters at least
one of two situations would occur: “blocking” of the first station or “starving” of the second station.
Blocking of the first station occurs when the first station finishes processing its stock and releases it
before the second station completes the material it is working on and the buffer of the second station
is full. Starving occurs when the second station completes its work yet there are no parts in its buffer
because the first workcenter is either busy or has no work. In both cases the system throughput is
below the expected.

One other situation that leads to loss of capacity is the breakdown of a workcenter in the line. If
there are no buffers, all the stations of the system have to shut down either because of starving or
blocking. If there are buffers between the stations the remaining stations can keep operating for some
time. In allocating buffers the number of buffers is not only dependent upon the processing parameters
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of the production line but also upon the positions of stations within the line. Another feature of buffers
is that buffers cease to be effective after some quantity. Beyond a threshold quantity of buffers the
increase in the overall output of the line is overridden by the costs associated with buffers.

Although buffers are an essential part of any production line with finite capacities, there are costs
associated with buffers. One of the important costs of buffers is the effect on flow time. Flow time
is the time required to move a piece through the system process from entry to completion of the last
stage. Customers accumulate indirect costs proportional to the time spent in the system. An increase
results in high flow time to processing time ratios and thus reduced output. Another area of cost is the
cost due to occupation of space. Larger quantities of buffers mean more space is occupied for waiting
which otherwise could be used for processing equipment or faster movement of material handling
equipment. Handling the unit into and out of the in-process inventory banks also adds to the costs.

From this description one can see that determining the quantity of buffers for each station in order
to create perfect balance between the costs and benefits associated with buffers is a challenging task.
Based on a given setting of the resources described above we can calculate two objective measures
of the line’s operation: the average throughput and the average work in progress i.e. the average total
number of units in the production line at steady state. Taking into account the average revenue per
item, its associated variable production cost and holding cost, and the costs of deploying the resources
we described above we can obtain an objective measure of the line’s economic performance.

Thus the production line under investigation can be modeled using the following basic objective
function:

(1)

where

is the number of individual stations within the line,

is the average throughput of the line,

is the average revenue per item,

is the average variable production cost,

is the average holding cost per item,

is the average WIP,

is the cost of providing one unit of buffer space,

is the buffer capacity allocated at buffer location ,

is the cost of a server at location ,

is the number of servers per workstation , and

is the cost of obtaining a given service rate at workstation location .
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Figure 1: The exPLOre architectural model.

3 The exPLOre Architecture

The exPLOre architecture is used for building customized, flexible, and efficient production line op-
timization decision support systems. The modularity of the system allows the utilization of different
evaluative function and optimization methods as well as the parametric expression of the production
line constraints and the business model. This flexibility is needed so that the system’s user can choose
the appropriate algorithms for solving the problem at hand. The guiding tradeoffs between the differ-
ent modules concern their relative efficiency, accuracy, and applicability. As an example it is possible
to obtain an exact buffer configuration for a small production line using full enumeration and the de-
composition method. On the other hand, in order to obtain a buffer and server number allocation for a
large production line one would choose simulated annealing as the optimization method because the
full enumeration of all configurations would take a prohibitive long time to complete, and the expan-
sion method as the evaluative function because the decomposition method we utilize in our current
implementation does not deal with parallel servers.

The exPLOre architecture is graphically depicted, as a UML class diagram [9], in Figure 1. The
architecture’s driver is an abstract optimization module. This can be instantiated using a variety of
optimization methods such as simulated annealing, genetic algorithms, or even the exhaustive (or re-
duced) enumeration of the search space. The search space of the optimizer is constrained by the output
of the constraint checker which, based on a production model expressed in a declarative domain-
specific language [10], acts as an “oracle” determining the allowed line configurations. The search
direction of the optimizer is guided by the cost analyser which combines the output of the through-
put evaluator with variables from the business model to determine the objective merit of a given line
configuration. The business model specifies the business benefit of a given line throughput as well as
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the business costs associated with the resources that are used to obtain that level of throughput. The
abstract throughput evaluator can be instantiated using Markovian, generalised queueing network
methods, a decomposition, or an expansion method algorithm.

4 Prototype Implementation

In order to test the viability of the exPLOre architecture we have implemented a number of concrete
modules for the optimizer and the throughput evaluator. Based on those modules we were able to
obtain optimal production line configurations for both small and large production lines within accept-
able execution time constraints (e.g. Figure 3). In the following paragraphs we outline the modules
that we have implemented.

4.1 Full Enumeration Optimizer

The full enumeration optimizer determines the optimal line configuration by an exhaustive enumer-
ation of all possible configurations. It is viable only for small production lines, servers, and buffer
space. However, it is useful for cross-checking the results of other optimization methods.

All buffer (and server) combinations can be methodically enumerated by considering a vector
denoting the position within the production line of each one of the available buffers. If we

use then given the vector we can then easily map to using the following
equation:

if
otherwise

(2)

For example .
If we then define a recursive function as

if

where
otherwise

(3)

given an initial buffer configuration of buffers

(4)

we can sequentially advance through each next possible configuration by setting

(5)

Essentially, maps the vector of positions to a new one representing another line configuration.
When the incremented position of a buffer resource reaches , the last place in the line, (

) then is recursively applied setting to point to the buffer in position . The result of the
recursive application of is then adjusted by setting the values from to to the new value of .
The complete enumeration terminates when all buffers reach the line position . As an example, in
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a line consisting of 3 buffers and 2 stations ( , ) and will take the following values:

(6)

The above procedure is also used for obtaining all different server combinations. To enumerate
all buffer and server combinations one complete server enumeration is performed for each line buffer
configuration.

4.2 Reduced Enumeration Optimizer

A variant of the full enumeration optimizer uses a reduced enumeration procedure by skipping non-
viable buffer allocation configurations. Reduced enumeration is based on the experimental observa-
tion that the absolute difference of the respective elements of the optimal buffer allocation (OBA)
vectors with and buffer slots is less than or equal to 1:

(7)

i.e. once the OBA for a given value of the number of the total buffer slots that have to be allocated
among the intermediate buffers of the production line has been determined, the OBA for a value

can be found by allocating the extra buffer slot in one of the neighbouring buffer locations of
the previous optimal buffer allocation.

In this way, we have been able to derive the OBA by induction for any number of buffer slots
that are to be allocated among the buffer locations of the line. The reduction works as follows:
when and are given one needs to determine all the OBA vectors for and then
for by searching only the values of , and . Furthermore, this reduction
starts after a number of total buffer slots . The reduction is substantial: by applying the improved
enumeration it has been experimentally observed that the number of iterations were reduced by at
least 60% for short lines. This reduction accounts for well over 90% for large production lines (with
more than 12 stations).

4.3 Simulated Annealing Optimizer

The simulated annealing (SA) optimizer determines a near-optimal configuration using the SA [11,
12] stochastic algorithm. Its search parameters may need expert problem-specific tuning. Simu-
lated annealing is an adaptation of the simulation of physical thermodynamic annealing principles
described by Metropolis et al. [13] to the combinatorial optimization problems [14, 11]. Similar
to genetic algorithms [15, 16] and tabu search techniques [17] it follows the “local improvement”
paradigm for harnessing the exponential complexity of the solution space.

The algorithm is based on randomization techniques. An overview of algorithms based on such
techniques can be found in the survey by Gupta et al. [18]. A complete presentation of the method
and its applications is described by Van Laarhoven and Aarts [12] and accessible algorithms for its
implementation are presented by Corana et al. [19] and Press et al. [20]. As a tool for operational
research SA is presented by Eglese [21], while Koulamas et al. [22] provide a complete survey of SA
applications to operations research problems. In our implementation [8], we found that the algorithm
can handle large configurations in bounded execution time.
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4.4 Genetic Algorithm Optimizer

The genetic algorithm (GA) optimizer determines a near-optimal configuration using genetic algo-
rithms. Genetic algorithms [15, 16, 23, 24] are global optimization techniques that avoid many of the
shortcomings exhibited by local search techniques on difficult search spaces, such as the buffer alloca-
tion problem. Genetic algorithm applications are outlined by Goldberg [25], their use for modeling,
design, and process control is presented by Karr [24], while the methodology used for optimizing
simulated systems can be found in the work by Tompkins and Azadivar [26].

GAs rely on modeling the problem as a population of organisms. Every organism represents a
possible valid solution to the problem. Organisms are composed of alleles representing parts of a
given solution. Standard genetic recombination operators are used to create new organisms out of
existing ones by combining alleles of the existing organisms. In addition, mutations can randomly
change the composition of existing organisms. Typically, the algorithm evaluates all the organisms
of the population and creates new organisms by combining existing ones based on their fitness. This
procedure is repeated until the variance of the population reaches a predefined minimum value.

The GA optimizer can also handle large configurations in bounded execution time. We found
[27] that the optimizer typically executes faster than the simulated annealing optimizer, producing
however less optimal configurations.

4.5 Exact Evaluator

The exact evaluator uses an exact numerical algorithm [28] in conjunction with a traditional Marko-
vian state model. It provides an exact measure of the line throughput at the expense of prohibitively
large execution times. Our implementation only handles lines with variable buffer allocations. The
evaluator is mostly useful for small lines with a limited number of buffers, or for verifying the opera-
tion of the other evaluators.

4.6 Decomposition Method Evaluator

The decomposition method evaluator is a throughput evaluator based on the decomposition method
[29, 30]. Compared with the exact evaluator it provides an efficient and relatively accurate approxima-
tion of the line throughput. Our implementation can not handle parallel servers and variable service
rates.

4.7 Expansion Method Evaluator

The Expansion Method is a robust and effective approximation technique developed by Kerbache
and Smith [31]. This method is characterized as a combination of Repeated Trials and Node-by-
node Decomposition solution procedures. In contrast to our decomposition method evaluator, the
expansion method evaluator can handle arbitrary line topologies with parallel server and variable
service rates. Its evaluative efficiency is however worse than the decomposition method evaluator.

4.8 Application Scenarios

Based on the above modules we obtained near-optimal line configurations for a number of different
buffer, server, and service rate allocation problems for both large and small production lines. As a
representative example, in Figure 2 the computed throughput of lines with buffers allocated using
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Figure 2: Computed throughput of lines with OBA computed using simulated annealing S(SA, Deco)
compared with complete enumerations using the exact S(CE, Exact) and the decomposition evaluative
methods S(CE, Deco).

simulated annealing is compared with complete enumerations using the exact and the decomposition
evaluative methods for 9 station line configurations with 1–12 buffers. In addition, Figure 3 illustrates
the time needed to calculate near-optimal line configurations for buffer (q) allocation, server allocation
(s), and service rate allocation (w) as well as combinations of these resources by using the simulated
annealing optimizer in conjunction with the expansion method throughput evaluator on production
lines consisting of stations, buffers, and servers.

We also used exPLOre in conjunction with algorithm animation techniques [32] to visualize the
search space of different optimization algorithms in the temporal domain. An interesting example
of these results can be seen in Figure 4 where a graphical representation of the operation of the
simulated annealing optimizer appears beside the equivalent representation for the genetic algorithm
optimizer. Each point on the two scatter charts represents a given line throughput value at a specific
step of the algorithm. Both charts depict the calculation of the placement of 30 buffers in a balanced
line of 15 stations. The simulated annealing algorithm optimizes a single solution in the specific
example in 80.000 iterations. The solution’s throughput value oscillates as both better and worse
solutions are randomly selected at each iteration step. As can be seen on the chart, the oscillation
width decreases following the algorithm’s exponential cooling schedule and converges towards the
optimal value. In contrast to the simulated annealing algorithm, the genetic algorithm is based on
the implicit parallelism of the solutions represented by the initial population. Thus, in the specific
example, it terminates with an optimal configuration after 250 generations. As the chart demonstrates,
the search starts with a wide spectrum of different solutions which are evaluated and evolve in parallel
with non-optimal solutions gradually becoming extinct. Mutations and recombinations regenerate
suboptimal solutions, but, due to the probabilistic organism selection strategy, their survival does not
last for long.
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5 Conclusions

ExPLOre was built from the bottom up as a workbench for experimenting with production line op-
timization algorithms and methodologies. It currently provides a rich set of algorithms for evaluat-
ing production line configurations. The architecture’s modularity and the plug-compatibility of the
optimizer and throughput evaluator module instances have allowed us to concentrate our work on
an objective comparison of the relative merits and deficiencies of the various algorithms. Placing
methodologies which were up to now studied in isolation under the same roof has provided us in
some cases with surprisingly differing results in terms of accuracy and efficiency for similar line con-
figurations. Thus part of our new work entails the reexamination and tuning of the respective methods
using exPLOre as an algorithm evaluation tool. In addition, the modularity of exPLOre has prompted
us to examine further optimization and evaluation algorithms as candidates for inclusion. We are
currently working on fine-tuning the exPLOre optimizer based on genetic algorithms. Finally, a fur-
ther direction of our research concerns the publication of the exPLOre module port specifications and
the provision of a friendly user-interface in order to create a publicly available version as a standard
production line optimization algorithm workbench.
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