
1

Multi-Technology Distributed Objects
and their Integration*+

Konstantinos Raptis1

Diomidis Spinellis2

Sokratis Katsikas1

Abstract: Research on software objects, components, middleware, and component-based applications
concerns among others ActiveX controls, JavaBeans (JBs), the Microsoft Transaction Server (MTS),
Enterprise JavaBeans (EJBs), and how they can interoperate with each other. Is their interoperation
possible? Which elements are responsible for the software objects’ incompatibility? Is compatibility a
responsibility of the objects or of their underlying architectures? In this article we discuss object
compatibility problems by outlining three basic middleware remoting technologies: the OMG’s
Common Object Request Broker Architecture (CORBA), Microsoft’s Distributed Component Object
Model (DCOM), and Sun’s Java Remote Method Invocation (RMI), discussing the basic
incompatibility points, and overviewing the basic strategies for bridging the gap between CORBA,
DCOM, and RMI.

Keywords: software objects; components; bridge; midlleware; object compatibility; interoperation

Introduction
Software development is becoming increasingly complicated. Business requirements
for client/server applications, support for multiple platforms, and sophisticated end-
user functionality have forced developers to adopt new approaches. One of the
concepts that changed the rules in software development, is object-oriented
programming (OOP), which is organized around objects rather than actions.
According to Budd [1]: “All objects are instances of a class. The method invoked by
an object in response to a message is determined by the class of the receiver. All
objects of a given class use the same method in response to similar messages”.

The need to develop software based on existing code rather than development from
scratch, led to the development of component-based software. Components are
typically object-oriented, or at least used as objects. Szyperski [16] defines a software
component as: “A unit of composition with contractually specified interfaces and
explicit context dependencies only. One that can be deployed independently and is
subject to third-party composition”.

To be composable components need to be identified by meaningful characteristics,
namely: the component name, which provides the developer with the ability to
identify it, the component interface, which identifies the operations fulfilled by the

 * Computer Standards & Interfaces, 23:157–168, 2001.
 + This is a machine-readable rendering of a working paper draft that led to a publication. The
publication should always be cited in preference to this draft using the reference in the previous
footnote. This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each author's
copyright. In most cases, these works may not be reposted without the explicit permission of the
copyright holder.
1 Department of Information and Communication Systems, University of the Aegean, GR-83200
Karlovasi, Greece. {krap,ska}@aegean.gr
2 Department of Technology and Management, Athens University of Economics and Business
(AUEB),Evelpidon 47A, 11362 Athens, Greece. dds@aueb.gr

2

component, and the component model which specifies the semantics and execution
context of the component.

Moreover, a software component must meet three basic demands:
1. it must be directly usable: the component must contribute to the development

process,
2. it must be a defined and discrete unit: the content of the component must be

explicitly identified, and
3. it must be separable from its original context and usable in other contexts: any

component must be reusable in applications other than the one it was first defined.

The rapid deployment of software components and the advantages of component-
based applications against the monolithic applications drive many enterprises to
deploy their network applications based on components. Although software
components address many enterprise application development issues, their use
unavoidably generates new problems. As we will see below, the components must
comply with a specific underlying middleware architecture in order to interact with
each other efficiently. This dependency on the underlying architecture creates
compatibility problems between components based on different architectures. These
problems become critical by changes in company information systems due to
acquisitions, mergers, and infrastructure upgrades [2].
As a component’s instance is typically an object and anything applying to objects also
affects components, in the next paragraphs our discussion will focus on software
objects.

Middleware Technologies
The ability to construct applications using objects from different vendors, running on
different machines, and on different operating systems, it is not an easy task. The need
for interaction between the software objects led to the specification of middleware
models. The Object Management Group’s Component Object Request Broker
Architecture (CORBA), Microsoft’s Distributed Component Object Model (DCOM),
and the Sun Microsystems Remote Method Invocation (RMI) are three models that
enable software objects from different vendors, running on different machines, and on
different operating systems, to work together.

To provide our readers with a feeling of the different technologies, we have
implement three versions of a very simple client/server application, utilizing CORBA
(Listing 1), DCOM (Listing 2), and Java RMI (Listing 3). The application client uses
the server to sum two numbers. The client, SumClient, initially sends two numbers to
the server, SumServer, through the SetNum() function, and then calls the Sum()
function through which the server returns to the client the sum of the two numbers.
We present the code for those applications without including the automatically
generated helper files. The client/server applications are implemented using the Java
language in order to provide a uniform language-layer presentation through which the
differences of CORBA, DCOM and Java RMI can be easily identified.

OMG CORBA
The Common Object Request Broker Architecture (CORBA) [10] is an open standard
specifying a framework for transparent communication between applications and

3

application objects. It is defined and supported by the Object Management Group
(OMG), a nonprofit, trade association of over 700 software developers, vendors, and
end-users. According to CORBA, a client which asks for some services from an
object makes a request which is transferred to the object request broker. The ORB is
responsible for forwarding the request to the right object implementation. This request
contains all the information required to satisfy the request: target object, operations,
zero or more parameters, and an optional request context.

The client’s request to the ORB and the forwarding of the request from the ORB to
the object implementation must be in a form that will be understandable
independently from the specific ORB. The client invocation style depends on the
component’s interface details available to the client at compilation time: if the client
has access to the appropriate component and its interface then it can use the static
interface, otherwise the client has to deposit its request to the ORB through the
dynamic interface. To allow ORB-neutral invocation the request is made to the ORB
through an interface called “IDL Stub”, if there is a static invocation, or through the
“Dynamic Invocation”, if there is a dynamic invocation. In the server end, the
promotion of the request to the object implementation is also made through interfaces
called “Static IDL Skeleton” and “Dynamic Skeleton”.

We stress that clients never come in direct contact with the objects, but always with
the interfaces of these objects. The interfaces are determined through OMG’s IDL
(Interface Definition Language). The clients are not “written” in OMG’s IDL, but in a
language for which there is a mapping to OMG’s IDL.

In addition, the communication of a client with an object running as a different
process or on a different machine uses a communication protocol to portably render
the data format independently from the ORB. For this reason the OMG has designed
the General Inter-ORB Protocol (GIOP), a protocol which ensures the connection of
the ORBs no matter where they came from. The Internet Inter-ORB Protocol (IIOP) is
a specific mapping of the GIOP to TCP/IP connections, the most popular protocol for
network connectivity.
CORBA Interface CORBA Server CORBA Client

// SumInt.idl

interface SumInt {
 void SetNum(in double x, in
double y);
 double Sum();
};

// SumServer.java

package addnum;
import org.omg.CORBA.*;
import java.io.*;
import java.util.*;

public class SumServer extends
_SumIntImplBase {
 double first;
 double second;
 SumServer() {
 super();
 }
 public void SetNum(double x, double y) {
 first=x;
 second=y;
 }
 public double Sum() {
 return first+second;
 }

 public static void main(String args[]) {
 ORB orb = ORB.init(args, new Properties());
 BOA boa =
((com.ooc.CORBA.ORB)orb).BOA_init(args,
new Properties());

// SumClient.java

package addnum;

import org.omg.CORBA.*;
import java.io.*;
import java.util.*;

public class SumClient {

 public static void main(String args[]) {

 ORB orb = ORB.init(args, new
Properties());

 String ref=null;

 try {
 String refFile="Sum.ref";
 java.io.BufferedReader in=
 new java.io.BufferedReader(new
FileReader(refFile));
 ref=in.readLine();
 }

 catch(IOException e) {
 System.out.println(e);

4

CORBA Interface CORBA Server CORBA Client
 SumServer server=new SumServer();
 try {
 String ref = orb.object_to_string(server);
 String refFile = "Sum.ref";
 java.io.PrintWriter out = new
java.io.PrintWriter(
 new java.io.FileOutputStream(refFile));
 out.println(ref);
 out.flush();
 }
 catch(java.io.IOException e) {
 System.out.println(e);
 System.exit(1);
 }
 boa.impl_is_ready(null);
 }
}

 System.exit(1);
 }

 org.omg.CORBA.Object obj =
orb.string_to_object(ref);
 SumInt look_sum =
SumIntHelper.narrow(obj);
 look_sum.SetNum(15,20);
 double result=look_sum.Sum();
 System.out.println(result);

 }
}

Listing 1: CORBA client-server example

Microsoft DCOM
Microsoft’s Distributed Component Object Model (DCOM) [7] is an object-oriented
model designed to promote interoperability of software objects in a distributed,
heterogeneous environment. It’s an extension of Microsoft’s Component Object
Model (COM) [8]. COM’s target is to allow two or more applications or objects to
easily cooperate with one another, even if they have been written by different vendors
at different times, in different programming languages, or if they are running on
different machines, and under different operating systems.

A client requests services from an object via the object interface represented as a
pointer. Therefore, the programming language in which the client is implemented
must have the ability to create pointers and call functions through these pointers and
the client must have the right pointer to that interface. The interfaces are determined
through Microsoft’s Interface Description Language (different from OMG’s IDL)
which allows the developers to construct the object interfaces.

In the case where the client does not have the right pointer to the appropriate interface
it addresses COM giving as input the class identification, CLSID, of the object and
the server’s type of object class: “in-process”, “local”, or “remote”. COM then uses
the Service Control Manager (SCM) to search and find the applicable server and give
back to the client the requested pointer. The laying down of the client’s request and its
promotion to the appropriate object implementor is done via proxy and stub interfaces
respectively. These interfaces are responsible to marshal and unpack the transmitted
data. Similarly, the stub marshals the object’s response and the proxy unpacks and
promotes the response back to client.

Obviously every client must provide at least the class identification (CLSID) of the
object it needs and the type of the server. The client may be implemented in any
programming language as long as the language supports the construction and
management of pointers. Inter-process communication is performed using Remote
Procedure Calls (RPCs). The remote procedure call mechanism is based on the
Distributed Computing Environment Remote Procedure Call mechanism (DCE RPC).

DCOM Interface DCOM Server DCOM Client
//SumInt.odl

[uuid(351420C2-B26C-11D3-8EE4-
0050048ADE88), version(1.0)]
library SumIntlib {

// SumServer.java

import com.ms.com.*;
import sumintlib.*;

// SumClient.java

import sumintlib.*;

public class SumClient {

5

 importlib("stdole32.tlb");

 [uuid(351420C3-B26C-11D3-8EE4-
0050048ADE88)]
 dispinterface ISumInt {
 properties:
 [id(1)] double first;
 [id(2)] double second;
 methods:
 [id(3)] void SetNum(double x,
double y);
 [id(4)] double Sum();
 };

 [uuid(351420C4-B26C-11D3-8EE4-
0050048ADE88)]
 coclass SumServer {
 dispinterface ISumInt;
 };

};

public class SumServer implements
ISumInt {

 double first;
 double second;

 public void SetNum(double x, double y) {
 first=x;
 second=y;
 }

 public double Sum() {
 return first+second;
 }
}

 public static void main(String args[]) {

 try {
 ISumInt look_sum = (ISumInt) new
sumintlib.SumServer();
 look_sum.SetNum(15,20);
 double result=look_sum.Sum();
 System.out.println(result);
 }

 catch(com.ms.com.ComFailException
e) {
 System.out.println("SumClient err: "
+ e.getMessage());
 System.out.println(e.getHResult());
 }
}

Listing 2: DCOM client-server example

On July 2000 Microsoft announced its .net platform as the new base for developing
Web-based applications. The .net platform as a programming model represents the
next evolution of Microsoft’s Component Object Model. The .net platform consists of
a set of application level frameworks, a set of base frameworks, and a common
language runtime. At the center of the .net framework is an object model called the
Virtual Object System providing a middleware infrastructure for components based
on different technologies across the Web [6]. The interoperability among the different
technologies across the Web is made possible using open Web protocols such as
XML and SOAP.

Java/RMI
The Remote Method Invocation (RMI) [14] is also an object-oriented model designed
to promote interoperability of Java objects in a distributed, heterogeneous
environment. RMI is the mechanism for the transparent communication exclusively
between Java objects.

For an RMI client to use an object’s services it must submit a request to the RMI
which contains an object reference, the desired methods of that object, and the
necessary parameters for the implementation of the request. RMI is then responsible
to find and promote the request to the right object. The submission of the client’s
request is made to a stub. The stub is the top level of the RMI which makes the object
appear as if it is in the same process as the client. The stub presents the request in the
right form to be transmitted to the server-side RMI part. After the stub, the request
passes through the remote reference layer to the transport layer which is responsible
for transmitting the request. At the server side, the object collects the request in a
reverse way through the RMI layers and responds back to the client via RMI in the
same way that the client did.

To deposit a request, the client must have an object reference to the needed object. In
the case where the client does not have the object reference it can look for it through
the appropriate service provided by the Java RMI namely the java.rmi.Naming class.
Like the other two technologies the RMI clients come in contact only with the
interfaces of the objects. Those interfaces are defined using the Java language and not
via a special IDL.

6

The client/object communication procedure through RMI is the same irrespective of
whether the object resides locally or remotely. In the case where the client
communicates with an object residing on a different machine the use of the Java
Remote Method Protocol (JRMP) is necessary.

Java RMI Interface Java RMI Server Java RMI Client
// SumInt.java

import java.rmi.*;

public interface SumInt extends
Remote {
 void SetNum(double x, double y)
throws RemoteException;
 double Sum() throws
RemoteException;
}

// SumServer.java

import java.rmi.*;
import java.rmi.server.*;

public class SumServer extends
UnicastRemoteObject
 implements SumInt {
 double first;
 double second;

 public SumServer() throws
RemoteException {
 super();
 }
 public void SetNum(double x, double y) {
 first=x;
 second=y;
 }
 public double Sum() {
 return first+second;
 }
 public static void main(String args[]) {

 try {
 SumServer server=new SumServer();

Naming.rebind("//Localhost/SumServer
", server);
 System.out.println("SumServer
ready.....");
 }
 catch (Exception e) {
 System.out.println("SumServer err: " +
e);
 System.exit(1);
 }
 }
}

// SumClient.java

import java.rmi.*;

public class SumClient {

 public static void main(String args[]) {

 try {
 String name =
"//Localhost/SumServer";
 SumInt look_sum =
(SumInt)Naming.lookup(name);
 look_sum.SetNum(15,20);
 double result=look_sum.Sum();
 System.out.println(result);
 }

 catch (Exception e) {
 System.out.println("SumClient err: "
+ e);
 System.exit(1);
 }

 }
}

Listing 3: Java RMI client-server example

Object Incompatibility
For software objects to interact with each other they must comply with the rules of at
least one of the above models. However, it is difficult if not impossible for two
objects conforming to dissimilar technologies to interact with each other. The
incompatibility reasons stem from the differences of the underlying models and the
way they present and use the software objects. We can identify three basic
incompatibility points [12]:

• Different Interface Approaches and Implementations
One of the basic elements of an object are its interfaces. Through their interfaces
objects expose their functionality. An interface consists of a description of a group of
possible operations that a client can ask from an object. A client interacts only with
the interfaces of an object, never with the object itself. Interfaces allow objects to
appear as black boxes. Different approaches and implementations of object interfaces
make them invisible to clients of other technologies.

7

Both CORBA and DCOM use special Interface Definition Languages (IDLs) for the
interface specification. Java RMI uses the Java language to define the interfaces. In
DCOM every interface has a Universally Unique Identifier (UUID), called the
Interface Identifier (IID), and every object class has its own UUID, called Class
Identifier (CLSID). Moreover, every object must implement the IUnknown interface.
When using the Java language to specify DCOM objects every Java class implements
that interface behind the scenes through the Microsoft Java Virtual Machine
(MSJVM). In Java RMI the interface must be declared as public, it must extends the
interface java.rmi.Remote and each method must declare java.rmi.RemoteException in
its throws clause.

• Different Object References and Storage
When a client wishes to interact with an object it must first retrieve information on the
object’s interface. A client’s underlying technology must recognize an object’s name,
it must know where to look, and how to retrieve its information, i.e. it must know how
the required object’s technology stores and disseminates its information. If a client’s
technology does not have that kind of ability then it is impossible for the necessary
information of the needed object to be found.

In CORBA (Listing 1) the IDL compiler generates the appropriate client stubs and
server skeletons for a client to deposit a static invocation to the requested object.
Moreover, all the necessary information is stored in the Interface Repository through
which a client can get run-time information for a dynamic invocation. The client is
searching for the needed methods using the object’s name reference and invokes it
statically, through the client stub interface, or dynamically, through the dynamic
invocation interface, depending on its run-time knowledge. For the interaction to be
possible the CORBA server program must bind the server object using the CORBA
Naming Service. Prior to the above interaction, the CORBA server and the CORBA
client program must first initialize the CORBA ORB through the ORB.init() method.

In the DCOM client/server interaction (Listing 2) the MSJVM hides many of the code
details needed in the previous CORBA example. The server object binding is
performed (using the javareg utility) through the system registry where the COM
clients search for the needed COM components. In the DCOM client the instantiation
of the DCOM object is done using the new keyword. Although it seems that the client
is referring to the needed remote object by its name, the system is looking for that
object based on its CLSID. All the necessary calls to the IUnknown and IDispatch
interfaces used by the client to acquire the appropriate pointer to the server object and
for the management of server’s object life cycle are accomplished transparently
through the MJVM.

Looking at the Java RMI example (Listing 3), in the server side program one creates
the server object and binds it to the RMIRegistry using the Naming.rebind() method
by assigning a URL-based name. On the client side, the Java RMI client gets a
reference from the server’s registry using the URL-based object’s name through the
Naming.lookup() method.

• Different Protocols
Another basic element in distributed object interactions is the protocol used for the
data transmission. In our case a protocol does not denote only the transport-level
protocol, such as TCP/IP but includes the presentation and session level protocols

8

supported by the Request Brokers (RBs). The transport-level protocol is responsible
for the transmission of the data to the end point. The presentation and session level
protocols are responsible for the formatting of the data transmitted between different
RBs from a client to an object, and vice versa. According to Geraghty et all [5]:
“Although the client and server may speak the same protocol, it is critical that they
speak the same language, or higher-level protocol”.

In Table 1 we present the basic differences of the three models according to the above
incompatibility points. These differences are not the only ones between these three
architectures and the only reasons for objects’ incompatibility. If we made a detailed
comparison between these models we would see many more differences and find
many additional reasons; the differences we described are however the prime causes
of incompatibilities. As we will see in the next paragraphs all attempts for bridging
these object middleware architectures focus their attention on these points.

Incompatibility
Points CORBA DCOM RMI

Interface Approaches
& Implementations IDL MIDL Java

Object Identification
Identification through
Object and Interface
Names

Identification through
GUID (CLSID & IID)

Identification through
URL-based Object
Name and Interface
Name

Object Reference
Reference through
Object Reference (OR)

Reference through
Interface Pointer

Reference through
URL-based Object
Reference

Object Storage
Storage in
Implementation
Repository

Storage pointers in the
System Registry

Storage in rmiregistry

Protocols GIOP/IIOP/ESIOP Object RPC (ORPC) JRMP/IIOP
Table 1: CORBA/DCOM/RMI basic differences in relation with incompatibility points.

Bridging the Gap
When two or more objects, based on different technologies must to interoperate the
mission target is to make the objects hide the fact that the other objects are
functioning under a different technology without changing their characteristics and
behavior. According to object technology the “shop-window” of an object is its
interface. When an object wishes to contact another it must be able to view,
understand, and work out with the other object’s interface in order to request the
needed methods. Each technology has its own way to create the objects’ interfaces
using its own IDL. Therefore, for two technologies to interoperate any object must be
able to understand the other technology’s IDL. Suppose a client deposits to its RB a
request for some methods. The RB must be able to look for the appropriate object
which exposes these methods. The RB must therefore know the way the other RB
names and stores the information of its objects in order to be able to find them and
forward the request. For the above operations to be feasible, the requests and the
responses to be transmitted must be formatted in a mutually understandable way i.e.
different RBs must communicate using the same protocols.

The goals we outlined can be achieved by using a proxy bridge object [11]. This
object is used as a mechanism to translate the requests and the responses in an
understandable form and maintain the main characteristics and behavior of the real

9

object. Moreover, the bridge object is provided with all the necessary attributes so that
it can be viewed from the different technology’s object as if it was part of the same
technology. Figures 1 and 2 are examples of class and activity diagrams of the
interaction of different technology objects.

Object B Object A

 + methodX()

Bridge Object

 - Attributes ObjA

 - Attributes ObjB

 + methodX()
 - methodY()

 - Attributes B.O. TechA
 - Attributes B.O. TechB

Interface B.O. TechA

Requests

Reponses

Requests

Reponses

Interface ObjB TechB

 Figure 1: Class diagram of ObjectA-ObjectB interaction.

10

Call
Request

Promotion of
Request through

RB TechA

[Call Accepted]

Promotion of
Request from B.O. to
Method Implementor

Object A:: Requests Method

[Dynamic Request]

[Dynamic Search]

[B.O. Founded]

Promotion of
Request through

RB TechB

Implementation of
rerquested method

from Object B

Possible
implementation of

other methods

Object B
Responded

[Error Message]

[Error Message]

Figure 2: Activity diagram of ObjectA-ObjectB interaction.

We can distinguish three cases depending on where the bridge object resides. It could
reside in the client’s machine, in the server’s machine, or on a third machine. If the
bridge object resides in the client’s machine the client’s environment must support
two or more different middleware technologies. Moreover, if the server object
changes its state this must be propagated to every bridge object i.e. to the machine of
every client. When the bridge object resides on the server’s or an entirely different
machine then the above problems are not relevant, but performance problems are
likely to occur. In the next paragraphs we outline some of the attempts for bridging
CORBA, DCOM, and RMI.

11

CORBA-DCOM Bridge
CORBA and DCOM, as an extension of COM, are the two most widespread
middleware technologies. Their importance stems from their “parents”. CORBA is
child of the Object Management Group an association including Sun Microsystems,
Compaq, Hewlett-Packard, IONA, Microsoft and others, while DCOM comes from
Microsoft which has the highest share in the desktop operating system market.
Although COM and its extension DCOM are built-in in Microsoft’s OSs and there are
no other providers of these technologies, the widespread adoption of Microsoft’s OSs
and the development of programming languages which support rich COM/DCOM
frameworks, led to the production of many components based on Microsoft’s
architecture. On the other side, the fact that the OMG provides CORBA as
specifications for ORBs instead of a product led many companies to create their own
CORBA compliant request brokers providing the developers and the users with a
range of ORBs capable to satisfy different demands.

After the first OLE/CORBA bridge from IONA Technologies in 1995, OMG decided
to include as part of its updated revision 2.0 of CORBA architecture and specification
the Interworking Architecture which is the specification for bridging OLE/COM and
CORBA. The Interworking Architecture addresses three points:

• Interface Mapping. As both models use IDLs to define the interfaces and as any
object is exposed by its interface, there must be a mapping between them in order
for a CORBA object to be viewed as a COM object and vice versa. Particularly,
OMG specifies four distinct mappings: CORBA/COM, CORBA/OLE
Automation, COM/CORBA, and OLE Automation/CORBA.

• Interface Composition Mapping. One of the basic differences between the
CORBA and COM interfaces is the characteristic of inheritance. While CORBA
supports multiple interface inheritance, COM supports multiple interfaces for
objects and therefore provides single inheritance. For a bridge to work there must
be a map from CORBA’s multiple inheritance to COM’s single inheritance and
vice versa.

• Identity Mapping. This specification is concerned with the mapping between the
different Interface IDs used by CORBA and COM.

As we saw, OMG provides the specifications regarding the mappings between COM
and CORBA IDLs and interfaces. One point that the Interworking Architecture does
not specify concerns the approach that should be taken to bridge COM and CORBA.
We can distinguish two basic approaches for bridging, the static bridging, and the
dynamic bridging [5].

Under static bridging, the creation of an intermediate code to make the calls between
the different systems is required. That intermediate code would be the client’s side
proxy which could be different in order to receive an object system’s call, transform
it, and forward it to another object system. The main advantage of static bridging is
that it can be easily implemented because it has to deal with object interfaces which
contain known code. The disadvantage of the static bridge is that any changes on the
interfaces require a change in the bridge.

In dynamic bridging there is no code depended on the types of calls, i.e. the interfaces
that must be generated. The operation of a dynamic bridge is based on the existence of

12

a dynamic mechanism which can manage any call in spite of the interfaces. The
dynamic bridging appears as an enhanced solution by which many problems of static
bridging can be avoided. The ability of CORBA to handle dynamic invocation calls
through the Dynamic Invocation Interface (DII) and the similar ability of DCOM
through dynamic OLE Automation, makes the use of dynamic bridging quite versatile
especially in an application environment where a large number of interfaces are
involved.

The OMG does not provide an implementation of a COM/CORBA bridge but only
specifications. The implementation belongs to commercial companies which have
released many bridge tools, compliant with OMG’s specification. Some of these
products are PeerLogic’s COM2CORBA, IONA’s OrbixCOMet Desktop, and Visual
Edge’s ObjectBridge. All the above products realize one of the interface mappings
that OMG specifies. Their main goal is to provide a two-way interworking between
COM and CORBA applications.

RMI-CORBA Bridge
The widespread deployment of the Java language and its use in the development of
Web-based applications in combination with the presence of CORBA as a mature
middleware technology quickly led to the combination of these two. Although Sun
provided its own model for remote Java-object interactions—the Java Remote Method
Protocol (RMI)—the effective combination of the Java language with the CORBA
architecture led OMG and Sun to contemplate the interoperation of RMI and
CORBA. According to Sun [15] the Java developers would be able to use RMI-based
Java objects and interoperate with CORBA-based remote objects. In June 1999, Sun
and IBM announced the release of the RMI architecture over IIOP protocol.
According to RMI-IIOP any RMI-based object can be accessed by a CORBA one and
vice versa. For this goal to be achieved, OMG has adopted two standards for “Object
By Value” and “Java-to-IDL” mapping.

Apart from the adoption of IIOP as RMI’s alternative protocol, a new version of the
rmic compiler has been developed to generate IIOP stubs/ties and IDL interfaces.
Furthermore, the use of new commands and tools, for example for naming and storing
in the registry the RMI-objects and for ORB activation, is required so that RMI-IIOP-
based objects can be accessed by CORBA-based ones.

DCOM-RMI Bridge
No special work has been done for bridging COM/DCOM with RMI. In this field the
attention is focused on the attempts for integrating the Java language and COM and
on the bridging of JavaBeans with ActiveX.

Until recently, Microsoft supported COM/DCOM in its own edition of the Java
language, Visual J++. To provide Java users access to COM technology, Microsoft
supported the Microsoft Java Visual Machine. According to Microsoft [9], the
MSJVM provided all the mechanisms required for a Java object to be viewed like a
COM object and for a COM object to be accessible like a Java object. With the
release of Visual Studio .net Microsoft has stopped the active support of Java in favor
of C#.

As for JavaBeans – ActiveX bridging, a number of companies, including Microsoft
and Sun, provide bridges for JavaBeans and ActiveX components to interoperate with

13

each other taking advantage of the JavaBeans architecture flexibility in conjunction
with the underlying protocols. Moreover, a lot of the work concerns the possibility of
a JavaBean component to be used in ActiveX-component based environments like
Microsoft Office or Visual Basic.

Conclusions
Most of the work in the area we surveyed concerns bridging CORBA and DCOM.
This is expected considering the widespread deployment of Microsoft’s operating
systems and the acceptance of CORBA as the most mature middleware architecture.
Moreover, the early presence of a variety of COM components and ORB products
from commercial companies led developers to use those products. As a result the
bridging between CORBA and DCOM was an urgent need.

The attempts to bridge CORBA and RMI indicate that although Sun states that it will
continue to support JRMP concurrently with IIOP as the RMI’s communication
protocol, the CORBA architecture will prevail over RMI. Besides, OMG’s intention
to support Enterprise JavaBeans confirms that notion. On the other hand, Microsoft’s
and Sun’s work on bridging ActiveX and JavaBeans apparently focus more on the
interoperation between their component models than between their middleware
remoting technologies.

In the latest versions of CORBA and COM, which are CORBA 3 and COM+, there is
no further contribution on the aspect of interoperability. CORBA 3 adds three new
features to the previous specifications concerned with Java and Internet integration,
quality of service control, and the CORBA component architecture [13]. On the other
hand, COM+ enriches its ancestor with new features and services like just-in-time
activation, object pooling, load balancing, in-memory databases, queued components,
automatic transactions, role-based security, and events [4]. Moreover, Microsoft’s
promotion of its .net platform for next-generation Internet applications caused
confusion about the future of technologies such as DCOM [3].

The interoperation between different technology objects is in practice much more
complex and difficult than in theory. Although many attempts have been undertaken
to bridge the gap between the underlying object architectures, these are currently not
providing true vendor-, language-, and technology-independent interoperation
between different software objects. Unfortunately, until now the use of a single
middleware product is the most reliable solution. Compatibility problems between
products of different vendors persist even if the products are compliant with the same
technology [2]. Even for the available bridge tools their “fully compliant” statements
many times refer to a single vendor’s products selection that does not support the
vendor’s independence theory. In the future, we hope that middleware
implementations using a common XML-based protocol will provide a new
opportunity for truly interoperable objects.

References
[1] T. Budd. An Introduction to Object-Oriented Programming, Addison-Wesley

Publishing Company, Inc., 1991.

14

[2] J. Charles. Middleware Moves to the Forefront, IEEE Computer, 32(5): 17–19,
May 1999.

[3] D. Deckmyn. Uncertainty Surrounds Microsoft’s .Net Plans, Computerworld,
34(27):12, July2000.

[4] G. Eddon. COM+: The Evolution of Component Services, IEEE Computer,
32(7):104–106, July 1999.

[5] R. Geraghty. S. Joyce, T. Moriarty, and G. Noone. COM-CORBA
Interoperability, Prentice-Hall, Inc., 1999.

[6] B. Meyer. The Significance of “dot-Net”, Software Development, 8(14):51-60,
November 2000.

[7] Microsoft Corporation. DCOM Architecture, White Paper, Microsoft
Corporation, Redmond WA USA, 1998.

[8] Microsoft Corporation. The Component Object Model Specification, Version
0.9, Microsoft Corporation, Redmond WA USA, October 1995.

[9] Microsoft Corporation. Integrating Java and COM, A Technology Overview,
Microsoft Corporation, Redmond WA USA, January 1999.

[10] Object Management Group, Inc. The Common Object Request Broker:
Architecture and Specification, Revision 2.0 (Updated), Object Management
Group, Inc., July 1996.

[11] K. Raptis, D. Spinellis, and S. Katsikas. Java as distributed object glue, in
World Computer Congress 2000, Beijing, China, August 2000. International
Federation for Information Processing.

[12] K. Raptis, D. Spinellis, and S. Katsikas. Distributed Object Bridges & Java-
based Object Mediator, Informatik/Informatique, 2:4–8, April 2000.

[13] J. Siegel. A Preview of CORBA 3, IEEE Computer, 32(5):114–116, May 1999.

[14] Sun Microsystems, Inc. Java Remote Method Invocation Specification, Beta
Draft Revision 1.2, Sun Microsystems, Inc., Mountain View, California USA,
December, 1996.

[15] Sun Microsystems, Inc. Java-Based Distributed Computing, RMI and IIOP in
Java, Sun Microsystems, Inc., Mountain View, California USA, June 26, 1997.
Online, Sun Microsystems, Inc. Available online:
http://www.javasoft.com/pr/1997/june/statement970626-01.html, September
1999.

[16] C. Szyperski. Component Software: Beyond Object-Oriented Programming,
Addison-Wesley Publishing Company, Inc., 1998.

15

Biographical Information

Konstantinos Raptis is a PhD student in the Department of Information and
Communication Systems at the University of the Aegean. His research interests
include distributed applications, software component models and distributed
component interoperation technologies. Contact him at krap@aegean.gr.
Diomidis Spinellis is an assistant professor in the Department of Technology and
Management at the Athens University of Economics and Business. Contact him at
dds@aueb.gr.
Sokratis Katsikas is vice rector at the University of the Aegean. He is also a professor
in the Department of Information and Communication Systems at the University of
the Aegean. Contact him at ska@aegean.gr.

