
2 8 I E E E  S O F T W A R E P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0  ©  2 0 0 4  I E E E

work on open source components, libraries,
frameworks, systems, platforms, and develop-
ment environments. The possibilities range
from reusing a particular subsystem such as the
SQLite or the HSQLDB embeddable database en-
gines to basing our work on a complete appli-
cation server such as JBoss. The number of
open source projects available to developers is

staggering: 30,000 projects are registered on
http://freshmeat.net, 70,000 projects (of vary-
ing quality, completeness, and stability) are
hosted on http://sourceforge.net, 5,400 Perl
modules are on the Comprehensive Perl
Archive Network (www.cpan.com), and
10,000 ports, all regularly regression tested for
correct compilation and installation, are dis-

focus

How Is
Open Source Affecting
Software Development?

T
he dynamism of open source software development efforts, nu-
merous high-profile success stories, and the novel economic,
business, and legal aspects of open source software adoption are
justifiably creating a stir in the development community. We soft-

ware practitioners increasingly face the possibility of using or basing our 

guest editors’ introduction

Diomidis Spinellis, Athens University of Economics and Business

Clemens Szyperski, Microsoft Research



tributed with the FreeBSD operating system.
(Many projects appear on more than one of the
locations just listed.) Following the reused
open source code’s evolution and deploying the
corresponding components are also becoming
less haphazard operations, with mechanisms
such as installable packages and anonymous
Concurrent Versions System (CVS) access en-
abling the automation of many operations.
This special issue examines how the prolifera-
tion and availability of open source are affect-
ing software development practices.

From a developer’s perspective, open source
is a combination of two important properties:
visible source code and a right to make (rela-
tively) unencumbered derivatives. The motiva-
tions behind the two properties are different,
and each can occur in isolation—examples in-
clude Microsoft’s shared source and library
vendors’ code licenses for developing derivative
products from nonvisible source. Both proper-
ties affect—in positive and negative ways—the
software artifacts (products) we develop and
how we develop them (process).

Influence on software products
The most obvious boon of open source to

software developers is the opportunity to base
a design on existing software elements. The
open source community gives us a rich base of
reusable software, typically available at the
cost of downloading the code from the Inter-
net. So, in many cases we can select best-of-
breed code to reuse in our system without hav-
ing to reinvent the wheel. The resulting
products benefit in two ways. First, the reused
open source code will typically be of higher
quality than the custom-developed code’s first
incarnation. Second, the functionality the
reused element offers will often be far more
complete than what the bespoke development
would afford. Products can easily incorporate
a standardized, sophisticated open source ele-
ment such as an XML parser, a sophisticated
scripting language, a regular-expression en-
gine, or a relational database to satisfy re-
quirements that in the past a custom-built,
small-scale suboptimal implementation would
have fulfilled.

Moreover, reuse granularity is not re-
stricted by the artificial product boundaries of
components distributed in binary form (which
marketing considerations often impose).
When reusing open source, code adoption can

happen at the level of a few lines of code, a
method, a class, a library, a component, a tool,
or a complete system. Furthermore, when
software is available in source code form, we
can more easily port to our target platform
and adjust its interfaces to suit our needs.
Consequently, software reuse possibilities
open up on three axes: what to reuse (pro-
moted by the available software’s breadth and
price), how to reuse it (diverse granularity and
interfacing options), and where to reuse it (in-
herent portability of source code over most bi-
nary packaged component technologies).
Movement along all three axes increases the
breadth of software reuse opportunities in any
development effort.

In addition, source code’s availability lets
us perpetually improve, fix, and support the
reused elements. This factor often mitigates
the risk of orphaned components or incom-
patible evolution paths that are associated
with the reuse of proprietary components.
Also, by incorporating the source code of a
reused element into the system being built, de-
velopers can achieve tight integration and a
system that can be maintained as a whole.

On the other hand, many of the reuse op-
tions that open source opens can isolate reused
code from its original authors and maintainers,
leading to divergent evolution paths or a fos-
silized code base. Consider as an example a de-
veloper reusing a regular-expression library by
directly incorporating its source code into his
or her application (perhaps to port it into an
embedded environment where the original li-
brary couldn’t compile). The developer would
have to (expensively) reintroduce any new im-
provements and fixes made on the original li-
brary code into the modified version. The con-
sequences can be dramatic, as in the case of
the slow or lacking propagation of security
fixes. In cases where the software industry is
moving toward new technologies such as 64-
bit architectures or Unicode character encod-
ing, the effort of upgrading reused source code
elements might mean large-scale duplication
of effort. Reuse in source code form can also
result in undesired coupling between separate
components when programmers hack together
the adopted code into a working implementa-
tion instead of using or designing modular in-
terfaces. This problem is exacerbated when
developers fail to prune reused elements and
end up dragging along unneeded dead code

J a n u a r y / F e b r u a r y  2 0 0 4 I E E E  S O F T W A R E 2 9

The number of
open source

projects
available to

developers is
staggering.



that will nevertheless be compiled, distributed,
and maintained with their product.

However, even when reusing open source
components with precisely defined and man-
aged interfaces (for example as a library), using
that source is problematic. It’s all too easy to
inadvertently create deep dependencies on im-
plementation details that will likely change in
the reused element’s future releases. (This
problem can also occur with binary compo-
nents—one prominent process that leads to
such dependencies is debugging, which com-
monly gives away implementation details that
the debugged code then depends upon.) In ad-
dition, even the published interfaces of open
source components often change in ways that
aren’t backward compatible; rapid innovation
in open source  projects coupled with the lack
of financial pressure from an existing customer
base tend to make such changes more preva-
lent than on proprietary products. As an ex-
ample, you can read more about how the evo-
lution and distribution model of GNU/Linux
can create problems for independent soft-
ware vendors at http://primates.ximian.com/
~miguel/texts/linux-developers.html. 

Furthermore, the availability of source code
affords an anarchic array of different depend-
ency modalities between adopted open source
elements. These include dependency require-
ments for specific source code, compiled li-
braries, packaged components, shared libraries,
header files, templates, databases, plug-ins, and
complete programs belonging to different open
source elements. The practically zero cost of the

reused elements further contributes to this
commendable phenomenon of extensive reuse.
As an example, Figure 1 illustrates the more
than 20 library dependencies associated with
the FreeBSD port of the xine multimedia player.
Consider, however, restrictions that are often
placed on the supported or required element
versions as well as on processor and operating
system platforms. Such restrictions—combined
with the possibility of deploying the same
reused element multiple times through different
products—can easily result in incompatible de-
pendencies that are nightmarishly difficult to
track, reconcile, and maintain. By comparison,
the infamous DLL problems of Windows plat-
forms often look downright simple.

Reusing open source components can also
affect the licensing model of the resultant
product. Some open source licenses dictate un-
der which license you can distribute derivative
products. The Ruffin-Ebert article in this issue
expands on the relevant licensing and intellec-
tual-property issues.

An additional problem associated with
reusing open source elements is that their
quality varies widely from shoddy to indus-
trial strength, and no standardized processes
and metrics exist for assessing the quality of a
given element. This can adversely affect prod-
ucts that depend on substandard software ele-
ments. Often, however, you can use the under-
lying source code, associated mailing list
archives, and bug-tracking databases as indi-
cators of the software’s quality, degree of
adoption, and support. Some software reposi-

3 0 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

XFree86-4-libraries

png

libxine

x11-fontconfig
freetype2

expat2
libiconv

Mesa3

libdvdcss

svgalib

libdvdread

libmng

sdl12

liba52

xine

aalib

lcms

jpeg

gettext

libogglibvorbis

mad

Figure 1. Library 
dependencies of the
xine multimedia player.



tories, such as sourceforge.net, even provide
metrics of a project’s activity based on factors
such as those just listed.

On the security front, products using open
source can benefit from reusing widely de-
ployed and scrutinized algorithms and proto-
cols. However, adversaries having access to
the source can more efficiently locate and ex-
ploit vulnerabilities, while the original devel-
opers may lack communication channels or re-
sources for informing the users of their
software about security vulnerabilities (see the
“Keep in Touch” sidebar on page 46).

Process issues
As we indicated in the introduction, open

source affects not only the products we build
but also how we build them.

First of all, open source’s low cost has con-
tributed to the widespread adoption of sophis-
ticated development platforms and tools.
These include operating systems such as
GNU/Linux and FreeBSD, databases such as
PostgreSQL and MySQL, application servers
such as JBoss, optimizing compilers such as
the GNU Compiler Collection, integrated de-
velopment environments such as Eclipse and
KDevelop, build managers such as Make and
Ant, and version control management systems
such as CVS. Today, even small programming
shops with a couple of developers can use so-
phisticated tools that once only large and well-
funded development efforts could afford.

Of course, having access to sophisticated
tools doesn’t imply that developers actually
use them. However, large open source devel-
opment projects increase the visibility, accessi-
bility, and adoption prospects of important
software engineering processes such as version
control, peer reviews, issue tracking, release
engineering, and regression testing. These
processes are standard in any CMM Level 3
and above organization, but most small shops
and development efforts used to ignore them.
Now, open source developers often diffuse the
best-of-breed practices they learn while work-
ing in large, organized open source projects to
the (possibly proprietary) projects they under-
take for pay.

In addition to familiarizing themselves with
sophisticated development practices, develop-
ers reusing software in source form can read
the code and can often learn valuable coding
practices from well-engineered software.1

Dick Gabriel and Ron Goldman point out that
ours is one of the few creative professions
where writers are not allowed to read each
other’s work:

The effect of ownership imperatives has
caused there to be no body of software as lit-
erature. It is as if all writers had their own
private companies and only people in the
Melville company could read “Moby-Dick”
and only those in Hemingway’s could read
“The Sun Also Rises.” Can you imagine devel-
oping a rich literature under these circum-
stances? Under such conditions, there could be
neither a curriculum in literature nor a way of
teaching writing. And we expect people to
learn to program in this exact context?2

Open-source software has changed this sit-
uation: we can now access millions of lines of
code (of variable quality), which we can read,
critique, and improve, and from which we can
learn. In fact, many of the social processes that
have contributed to the success of mathemati-
cal theorems as a scientific communication ve-
hicle also apply to open source software.3

Most open source programs have been

� Documented, published, and reviewed in
source code form

� Discussed, internalized, generalized, and
paraphrased

� Used for solving real problems, often in
conjunction with other programs

On the other hand, if the reused software is
not evolving, or is evolving in a direction in-
consistent with the needs of the organization
that uses it, the organization must contribute
resources to its improvement. These resources
can’t always be planned in advance because
the organization reusing the code typically has
limited control over the reused code’s develop-
ment process. Disagreements with or within
the software’s development team often create
product forks and can result in effort duplica-
tion, waste, and confusion in the community
depending on the project. Forks can also occur
owing to genuine irreconcilable technical con-
siderations, in which case they might create
different evolutionary paths that are all valu-
able to their separate user communities. As an
example, at the time of this writing, software
platforms based on the original BSD Unix dis-
tribution include

J a n u a r y / F e b r u a r y  2 0 0 4 I E E E  S O F T W A R E 3 1

Many of the
social

processes 
that have

contributed to
the success of
mathematical
theorems as
a scientific

communication
vehicle also

apply to 
open source

software.



� FreeBSD, targeting Intel and 64-bit plat-
forms

� NetBSD, having as its design goal porta-
bility to various hardware architectures

� OpenBSD, emphasizing security and cryp-
tography as explicit project goals

� DragonFly BSD, experimenting with dif-
ferent feature sets and algorithms

Furthermore, when an organization wants or
is forced to support a reused software element,
it must integrate into its development process
the reused element’s (typically incompatible) de-
velopment process. This includes issue tracking,
software updates, security advisory notifica-
tions, software builds, and the actual software
repository. Integrating multiple software ele-
ments (and therefore multiple incompatible soft-
ware processes) can be challenging.

In addition, reusable software’s widespread
availability and the numerous reuse patterns
afforded by open source are reducing the fo-
cus that many organizations put on centrally
organized, promoted, and maintained soft-
ware reuse efforts. As we discussed earlier, the
ability to download open source from the In-
ternet isn’t always a proper substitute for an
in-house reusable component library.

Finally, adopting open source development
practices can make organizations pay less at-
tention to strategic planning, detailed require-
ments elicitation, testing, and organized sup-
port. These activities are often neglected in
many open source projects. Therefore organi-
zations whose members, through their in-
volvement in open source projects, have
adopted the corresponding mindset are likely
to skip or downgrade the importance of these
life-cycle tasks.

O pen source and non-open source de-
velopment models are not at logger-
heads with each other. They each have

strengths and weaknesses and, most likely,
they are both here to stay.

Developing with open source creates new
challenges and opportunities for the products
we build and the processes we use. Open
source is a disruptive technology (in the sense
articulated in Clayton Christensen’s Innova-
tor’s Dilemma.4 It currently affects develop-
ment in numerous small ways, but could in the

3 2 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Further Reading List
Books and articles

� Understanding Open Source Software Development by J. Feller and
B. Fitzgerald (Addison-Wesley, 2001). Open source development
from a software engineering perspective

� The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary by E.S. Raymond (O’ Reilly and As-
sociates, 2001). The ideas behind open source

� Component Software: Behind Object-Oriented Programming by C.
Szyperski (Addison-Wesley, 2002). The canonical reference regard-
ing software components

� Software Ecosystem—Understanding An Indispensable Technol-
ogy and Industry by D.G. Messerschmitt and C. Szyperski (MIT
Press, 2003). Discusses software as an ecosystem of interacting
participants

� “Code Reading: The Open Source Perspective” by D. Spinellis, Ef-
fective Software Development Series (Addison-Wesley, 2003). More
than 600 examples from open source projects presenting common
development and coding practices and the skill of reading code

� Managing Open Source Projects by J. Sandred (John Wiley &
Sons, 2001). Demonstrates how the ideas and models behind the
management of open source projects can apply to any type of
software development

� “Release Management within Open Source Projects” by J.R. Ehren-
krantz, Proc. 3rd Workshop Open Source Software Eng., Int’l Conf.
Software Eng. (IEEE CS Press, May 2003, http://opensource.ucc.
ie/icse2003/3rd-WS-on-OSS-Engineering.pdf). Examines the 
release practices of three open source projects (the Linux kernel,
Subversion, and the Apache HTTP server) to identify areas of
weaknesses in their release management processes and suggest
improvements

� “Innovation by User Communities: Learning from Open Source Soft-
ware” by E. Von Hippel, Sloan Management Rev. (vol. 42, no. 4,
Summer 2001, pp. 82–86). Presents the relationship between the
open source development culture, innovation, and learning

Web sites

� www.opensource.org. The open source home page. It includes a
list with all software licenses that classify a software distribution as
open source and also a list of successful open source projects.

� www.onlamp.com. The LAMP Model is a widely used recipe for im-
plementing dynamic Web sites. It entails using the GNU/Linux op-
erating system; the Apache Web Server; the MySQL Database En-
gine; and Perl, Python, or PHP as a scripting language. The model
demonstrates how you can use open source to implement Web-
based enterprise systems.

� http://opensource.mit.edu. The open source directory maintained
by the MIT Sloan School of Management includes a large catalog of
scientific publications related to open source.

� http://freshmeat.net, http://sourceforge.net. These two Web sites
are hubs hosting thousands of open source projects. Developers can
use them to search for software to reuse, browse the corresponding
forums and mailing lists, and download packages.



long run lead to a paradigm shift in the
way we develop software.

Acknowledgments
Vassilios Karakoidas reviewed earlier drafts

of this introduction and contributed perceptive
remarks. Publication of this issue’s articles
wouldn’t have been possible without the re-
viewers’ valuable and constructive comments.
Special thanks to Terry Bollinger for shepherd-
ing the issue and to Warren Harrison, Dale
Strok, and Pauline Hosillos for their support
leading to a smooth editorial process. We also
thank Nikos Korfiatis, who helped compile the
Further Reading section, and Erast Athanasia-
dis, Ioanna Grinia, Alexandra-Maria Sigala,
Stephanos Androutsellis-Theotokis, and Vasilis
Vlachos, who performed the background re-
search for planning this issue.

References
1. D. Spinellis, “Code Reading: The Open Source

Perspective,” Effective Software Development
Series, Addison-Wesley, 2003, pp. 2–3.

2. R.P. Gabriel and R. Goldman, “Mob Software:
The Erotic Life of Code,” Proc. ACM Conf. Ob-
ject-Oriented Programming, Systems, Languages,
and Applications, ACM Press, Oct. 2000, www.
dreamsongs.com/MobSoftware.html.

3. R. DeMillo, R. Lipton, and A. Perlis, “Social
Processes and Proofs of Theorems and Pro-
grams,” Proc. 4th ACM Symp. Principles of
Programming Languages, ACM Press, 1977,
pp. 206–214.

4. C.M. Christensen, The Innovator’s Dilemma:
When New Technologies Cause Great Firms to
Fail, Harvard Business School Press, 1997.

J a n u a r y / F e b r u a r y  2 0 0 4 I E E E  S O F T W A R E 3 3

About the Authors

Diomidis Spinellis is an assis-
tant professor in the Department of
Management Science and Technology at
the Athens University of Economics and
Business. He has written a number of
open source tools and libraries, some of
which are part of FreeBSD and the X
Window system. He has also been a de-
veloper and manager in large commer-

cial software projects. He is also the author of Code Reading: The
Open Source Perspective (Addison-Wesley, 2003). Contact him at
Athens Univ. of Economics and Business, Patision 76, GR-104 34
Athens, Greece; dds@aueb.gr.

Clemens Szyperski is a soft-
ware architect at Microsoft and is affili-
ated with Microsoft Research, where he
furthers the principles, technologies,
and methods supporting component
software. He is also an adjunct profes-
sor in the Swiss Federal Institute of
Technology’s School of Computing Sci-
ence. He is the author of Component

Software: Beyond Object-Oriented Programming (Addison-Wesley,
2002) and the new book Software Ecosystem: Understanding an
Indispensable Technology and Industry (MIT Press, 2003). He re-
ceived his PhD in computer science from the Swiss Federal Institute
of Technology in Zurich. Contact him at Microsoft Research, One
Microsoft Way, Redmond, WA 98052; cszypers@microsoft. com.

The Department of Electrical & Computer Engineering invites applicants for tenure-track
positions at the rank of Assistant or Associate Professor to expand its already strong team
of software engineering researchers. Applicants who are in the process of finishing their
PhD are also welcome. Outstanding senior candidates will be considered for a full Professorship
as iCORE chair, see http://www.icore.ca/grants.htm.

We are interested in candidates whose primary research interest is in the area of Software
Engineering. Applicants must possess a PhD in Software Engineering or a closely related
discipline and have a strong research record. Foundational areas of software engineering,
real-time software engineering, hardware-software co-design and emerging technologies are
of particular interest, but highly qualified candidates working in other areas of software
engineering will also be considered.

The Department is committed to excellence in research and teaching. It has one of the first
CEAB-accredited software engineering programs on the undergraduate level and has a
well-established graduate program in software engineering. More information about the
Department is available at http://www.enel.ucalgary.ca/DepartmentalWeb/index.htm.

The University of Calgary has unique funding opportunities for software engineering research.
Various government agencies (e.g., Alberta Ingenuity Fund [AIF], Canada Foundation of
Innovation [CFI],The National Science and Engineering Research Council [NSERC]) and
numerous private companies from Calgary’s high-tech sector as well as international
corporations have contributed to a well-funded research program in the Department.

The University of Calgary is a public institution with a full-time student population of about
25,000.The City of Calgary has a population of over 900,000 and is one of the fastest
growing high-tech industry based cities in Canada. It is situated within an hour's drive of
Banff National Park, one of the most beautiful areas of the Rocky Mountains.

Rank and salary are commensurate with qualifications and experience. Applicants are
encouraged to apply as soon as possible for positions which are currently open.

Applications – including a curriculum vitae, a statement of interests, current and projected
research activities, a sample of written work, and any available teaching evaluations
should be sent to: Dr. Joshua Leon, Head, Department of Electrical & Computer Engineering,
University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada, T2N 1N4.
Email to: acadappt@enel.ucalgary.ca

All applications should also include names and contact information of at least three
individuals from whom the selection committee may request a written or verbal reference.

Engineering

www.ucalgary.ca

All qualified candidates are encouraged to apply; however, Canadians and permanent residents
will be given priority.

The University of Calgary respects, appreciates and encourages diversity.


