
T
he ultimate source of truth regarding a
program is its execution. When a pro-
gram runs, everything comes to light: cor-
rectness, CPU and memory use, and even
interactions with (potentially buggy) li-
braries, operating systems, and hardware.

Yet, this source of truth is also fleeting, rushing
into oblivion at the tune of billions of instruc-

tions per second. Worse, captur-
ing that truth can be a tricky,
tortuous, or downright treach-
erous affair.

Peeking into a program’s op-
eration typically involves pre-
paring a special version of it:
we might compile it with speci-
fic flags or options, link it with
appropriate libraries, or run it
with suitable arguments. Often,

we can’t easily reproduce a problem, so we
need to ship our carefully crafted program ver-
sion to a customer, who then will have to wait
for the problem to appear again. Irritatingly,
some of the ways we instrument programs
make the program too slow for production use
or obfuscate the original problem.

A family of tools ...
We don’t lack for ways to spy on a pro-

gram. If we care about CPU use, we can run
our program under a statistical profiler that
will interrupt its operation many times every
second and note where the program spends
most of its time. Alternatively, we can arrange
for the compiler or runtime system to plant
code by setting a time counter at each func-
tion’s beginning and end, and we can then ex-
amine the time difference between the two

points. In extreme cases, we can even have the
compiler instrument each basic code block
with a counter. Some tools that use these ap-
proaches are gprof and gcov on Unix systems,
the Extensible Java Profiler (EJP) and the
Eclipse and NetBeans profiler plug-ins for Java
programs, and NProf and the Common Lan-
guage Runtime (CLR) Profiler for .NET code.
Memory use monitors typically modify the
runtime system’s memory allocator to keep
track of our allocations. Valgrind on Unix sys-
tems and the Java software developer’s kit
JConsole are two players in this category.

Locating a bug involves either inserting log-
ging statements in our program’s key locations
or running the code under a debugger, which
lets us dynamically insert breakpoint instruc-
tions. I discussed both approaches in the
May/June 2006 column.

Nowadays, however, most performance
problems and quite a few bugs involve using
third-party libraries or interactions with the
operating system. One way to resolve these is-
sues is to look at the calls from our code to
that other component. By examining each
call’s time stamp or by looking for an abnor-
mally large number of calls, we can pinpoint
performance problems. The arguments to a
function can also often reveal a bug. Tools in
this category include ltrace, strace, ktrace, and
truss (on Unix) and APIS32 or TracePlus (on
Windows). These tools typically work by using
special APIs or code-patching techniques to
hook themselves between our program and its
external interfaces.

Finally, our program might work fine, only
to have the operating system act up. In these
cases, we need to put the operating system un-

1 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

I Spy
Diomidis Spinellis

Knowledge is power. —Sir Francis Bacon

M a r c h / A p r i l 2 0 0 7 I E E E S O F T W A R E 1 7

TOOLS OF THE TRADE

der a microscope. Fortunately, modern
operating systems zealously monitor
their operation and expose various per-
formance figures through tools such as
vmstat, netstat, and iostat on Unix sys-
tems or the Event Tracing for Windows
framework.

Most tools I’ve examined so far have
been around for ages and can help solve
a problem once we’ve located its ap-
proximate cause. They also have sev-
eral drawbacks: they often require us to
take special actions to monitor our
code, they can decrease our system’s
performance, their interfaces are idio-
syncratic and incompatible with each
other (each one shows only a small part
of the overall picture), and sometimes
important details are simply missing.

... And one tool to rule them all
The “gold winner” in the Wall Street

Journal’s 2006 Technology Innovation
Awards contest was a tool that ad-
dresses all the shortcomings I outlined.
DTrace, Sun’s dynamic-tracing frame-
work, provides uniform mechanisms for
spying comprehensively and unobtru-
sively on the operating system, applica-
tion servers, runtime environments, li-
braries, and application programs. It’s
open source under Sun’s fairly liberal
Common Development and Distribu-
tion License. At the time of writing,
DTrace is part of Sun’s Solaris 10, and
it’s also being ported to Apple’s Mac OS
X version 10.5 and FreeBSD. If you
don’t have access to DTrace, you can ex-
periment with it by installing a freely
downloadable version of Solaris Ex-
press on an unused x86 machine. I must
warn you, however, that I’ve found
DTrace to be seriously addictive.

Unsurprisingly, DTrace isn’t a sum-
mer holiday hack. The three Sun engi-
neers behind it worked for several years
to develop mechanisms to safely instru-
ment all operating system kernel func-
tions, any dynamically linked library,
any application program function or
specific CPU instruction, and the Java

virtual machine. They also developed a
safe interpreted language in which we
can write sophisticated tracing scripts
without damaging the operating sys-
tem’s functioning, and they came up
with aggregating functions that can
summarize traced data in a scalable way
without excessive memory overhead.
DTrace integrates technologies and wiz-
ardry from most existing tools and
some notable interpreted languages to
provide an all-encompassing platform
for program tracing.

We typically use the DTrace frame-
work through the dtrace command-line
tool. To this tool, we feed scripts we write
in a domain-specific language called D;
dtrace installs the traces we’ve specified,
executes our program, and prints its re-
sults. D programs simply consist of pat-
tern and action pairs like those found in
the awk and sed Unix tools and in many
declarative languages. A pattern (called a
predicate in the DTrace terminology)
specifies a probe—an event we want to
monitor. DTrace comes with thousands
of predefined probes (49,979 on my sys-
tem). Additionally, system programs
(such as application servers and runtime
environments) can define their own
probes, and we can also set a probe any-
where we want in a program or in a dy-
namically linked library. For example,
the command

dtrace -n syscall:::entry

will install a probe at the entry point of
all operating system calls. The default
action will be to print the name of each
system call executed and the process ID
of the calling process. We can combine
predicates and other variables using
Boolean operators to specify more
complex tracing conditions.

In the previous invocation, syscall
specifies a provider—a module provid-
ing some probes. Predictably, syscall
supplies probes for tracing operating
system calls (463 probes on my system).
For example, one of these probes,
syscall::open:entry, is the entry
point to the open system call. DTrace
contains tens of providers, providing ac-
cess to statistical profiling, all kernel
functions, locks, system calls, device dri-

vers, I/O events, process creation and
termination, the network stack’s man-
agement information base (MIB), the
scheduler, virtual-memory operations,
user program functions, arbitrary code
locations, synchronization primitives,
kernel statistics, and Java virtual ma-
chine operations.

With each predicate, we can also de-
fine an action. This action specifies
what DTrace will do when a predicate’s
condition is satisfied. For example, the
command

dtrace -n

‘syscall::open:entry

{trace(copyinstr(arg0));}’

will list the name of each opened file.
Actions can be arbitrarily complex:

they can set global or thread-local vari-
ables, store data in associative arrays,
and aggregate data with functions like
count, min, max, avg, and quantize.
For instance, the following program
will summarize the number of times
each process gets executed over the
dtrace invocation’s lifetime:

proc:::exec-success {

@proc[execname] = count()}

I n typical use, DTrace scripts range
from one-liners, like the ones I gave
here, to tens of lines containing mul-

tiple predicate-action pairs. A particu-
larly impressive example listed on a
DTrace blog illustrates the call sequence
from a Java method invocation, through
the C libraries and an operating system
call, and down to the operating system
device drivers. As software engineers,
we’ve spent a lot of effort creating ab-
stractions and building walls around our
systems; more impressively, it looks like
we’ve also found ways to examine our
isolated blocks holistically.

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Quality: The Open Source Perspective (Addison-Wesley, 2006).
Contact him at dds@aueb.gr.

Post your comments online by visiting the column’s
blog: www.spinellis.gr/tools

