
2 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

M
aster, a friend told me today that I
should never use the editor’s copy-
paste functions when program-
ming,” said the young apprentice.
“I thought the whole point of pro-
gramming tools was to make our

lives easier,” he continued.
The Master stroked his long

grey beard and pressed the
busy button on his phone. This
was going to be one of those
long, important discussions.

“Why do you think copy-
pasting is wrong?” asked the
Master.

“Because I violate the DRY
[don’t repeat yourself] princi-
ple?” replied the apprentice

hesitantly.1

“Exactly true, my young friend,” nodded
the Master.

“But it’s so much easier to copy-paste code
than to grapple with the alternatives,” contin-
ued the apprentice.

The Master turned to his keyboard and
typed “copy paste miner” in a search box. His
memory was rapidly deteriorating, but luckily
he could compensate by applying his formida-
ble search skills on Google’s planet-wide mem-
ory. He read aloud some key sentences from an
article’s abstract:2 “CP-Miner uses data-mining
techniques to efficiently identify copy-pasted
code in large software suites and detects copy-
paste bugs. Specifically, it takes less than 20
minutes for CP-Miner to identify 190,000
copy-pasted segments in Linux and 150,000 in
FreeBSD. Moreover, CP-Miner has detected
many new bugs in popular operating systems,
49 in Linux and 31 in FreeBSD.”

The Master looked up from his screen, “Now
that you’ve seen evidence of the extent and dan-
gers of copy-pasting, let me ask you, are you
sure you know all the appropriate alternatives?”

“Of course I know them,” replied the disci-
ple cockily.

“Let’s see. How do you handle two identi-
cal code sequences?”

“I wrap the code up in a function or method.”
“And if these functions are to execute sub-

tly different code?”
“Then I’ll factor out the differences

through Boolean or enumeration parameters I
pass to them. I’ll set the code in the function
to follow different execution paths, based on
these parameters.”

“And if the differences concern data em-
bedded in code?”

“That’s trivial; I’ll simply pass those vary-
ing elements as parameters.”

The Master was busily jotting down the ap-
prentice’s answers and his own ideas in a table
(see table 1). He continued firing off questions.

“And if the differences lie in the types the
functions use?”

“Then I’ll employ Java’s generics or the C++
template mechanism. Macros also work for this
purpose, but they’re ugly and error-prone.”

“And if each version of the code has local
data associated with it?”

“Then I’ll wrap up the whole mess in a class.”
“And how else can a class help you avoid

copy-pasting?”
“I can abstract similarities in data by ex-

pressing them as a new type. Instead of copy-
pasting a group of similar data elements, I can
pack them up in a class or structure and then
create many instances of it.”

The Master paused. These apprentices are

Abstraction and Variation
Diomidis Spinellis

getting better every year, he thought.
Yet he always doubted the level of un-
derstanding lying beneath the polished
replies. “Let’s find out,” he murmured
and continued in a louder voice, “But
surely passing parameters around can
get unwieldy when you want to express
extensive code variations?”

The apprentice had an answer ready:
“In that case, I can express those varia-
tions as different functions and pass
one of those functions as a parameter to
the code they have in common.”

“But does this approach scale when
you have many dimensions of variation
among even more dimensions of simi-
larity?” probed the Master.

The apprentice was now glad of the
time he spent last month poring over
the FreeBSD kernel source code. “It can
scale if you’re disciplined,” he replied.
“You organize the various functions to-
gether in structures representing the be-
havior that these functions implement.
For instance, CDs and USB sticks use
different layouts and data structures for
storing their files. So, you have one
group of functions for manipulating
files on a CD and another group for
manipulating files on a USB stick.”3

The Master nodded appreciatively.
“Is there a better way to express varia-
tions of code?” he asked, encouraging
his friend to show off his knowledge.

The apprentice raised an eyebrow at
the leading question and playfully con-
tinued the Master’s game. “I’m very
glad you asked me this. Indeed, we can
abstract commonality and variability

by organizing our code and data in a
class hierarchy. Common elements go
to the base classes, and classes derived
from them contain the elements that
vary.” He paused. “Yet I sometimes in-
dulge in copy-pasting because I feel
that abstracting might not be worth-
while. Master, do you think there are
limits to what we should abstract?” he
asked hesitantly.

The Master smiled and sketched a
rough chart (see figure 1). “Indeed my
friend,” he replied, “abstraction makes
your code clearer by replacing concrete
complexity with an abstract name, but
there are costs. We can often ignore the
time and space performance penalties,
but the cost of comprehending any ab-
straction is real and slowly increases as
we add abstractions in our code.” He
pointed at his chart: “Look here. On
the left side, the gains from abstraction
are so large that they shadow its cost.
However, after a point, the benefits ta-
per off. Further to the right, you see
that the abstraction’s benefits turn neg-
ative: your code becomes less compre-
hensible and maintainable.”

T he apprentice nodded his under-
standing and asked one last question.
“But how can I determine when I’ll

gain by abstracting and when abstrac-
tion will obfuscate my code?”

The Master looked him in his eyes.
“Dear friend, this is why superb pro-
gramming requires a lot of experience
and expert judgment. This is what
makes programming an art.”

References
1. A. Hunt and D. Thomas, “OO in One Sen-

tence: Keep It DRY, Shy, and Tell the Other
Guy,” IEEE Software, vol. 21, no. 3, 2004,
pp. 101–103.

2. Z. Li et al., “CP-Miner: Finding Copy-Paste
and Related Bugs in Large-Scale Software
Code,” IEEE Trans. Software Eng, vol. 32,
no. 3, 2006, pp. 176–192.

3. D. Spinellis, “Another Level of Indirection,”
Beautiful Code, A. Oram and G. Wilson, eds.,
O’Reilly, 2007, pp. 279–291.

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Quality: The Open Source Perspective (Addison-Wesley, 2006).
Contact him at dds@aueb.gr.

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 2 5

TOOLS OF THE TRADE

Table 1
Abstraction and variation mechanisms

Abstraction Variation

Code Function ■ Multistate parameter (Boolean or enumeration)
■ Value parameter
■ Function parameter (a function pointer, a

functor, or an object implementing an interface)
■ Type parameter

Decision table ■ Multiple table instances

Code/Data Class ■ Object instance, subclass, type parameter

Domain-specific language ■ An instance of a DSL program

Type ■ Type parameter

Data Database

Figure 1. Abstraction and its benefits.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

