
70 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

T
here’s not a lot you can change in the process
of constructing a building. You must lay the
foundation before you erect the upper floors,
and you can’t paint without having the walls
in place. In software, we’re blessed with more
freedom.

I recently experienced this when I implemented
wpl, a small system that extends arbitrary Web

pages with links to Wikipedia en-
tries. (Try it at www.spinellis.gr/
wpl.) The system has many parts:
tools that convert the Wikipedia
index into a longest-prefix search
data structure; an HTML parser;
code that adds links to phrases
matching Wikipedia entries; and
a Web front end that fetches the
page, adds the links, and returns
it back. As I was adding the finish-

ing touches, I reflected on the process I used to con-
struct the system. (I find a postmortem examination
deeply satisfying, but this is probably because I’m
not a medical doctor.)

What struck me were the different approaches I
used to construct each of the system’s main parts.
For the search data structure, I worked bottom-up:
I first read about and experimented with a couple of
alternatives, learning about Bloom filters, tries, and
Patricia (Practical Algorithm to Retrieve Informa-
tion Coded in Alphanumeric, and I’m not making
this up) trees. Next, I designed the data layout and
the low-level bit-twiddling code to add and locate
entries. Only then did I write the tools for building
the index and an API for searching entries in the
data structure.

For the HTML parser and word-linking code,
I started somewhere in the middle. I wrote a state-

transition engine to parse “tag soup” HTML
(HTML that isn’t necessarily well formed), and then
I extended it with code to add links to suitable text,
and I added an appropriate interface.

As you’ll probably expect, for the Web front end,
I followed yet another approach, working in a top-
down fashion. I first wrote down the server’s main
tasks and their precise descriptions; once these were
in place, I started working on their implementation.

As I reflected on my construction process, I
wondered what made me choose three different ap-
proaches within a week: bottom-up, middle-out,
and top-down. Are my programming work habits
really so chaotic as they appear? If so, what am I
doing writing columns in a magazine for software
professionals?

The Hidden Logic
Fortunately, I quickly realized there was logic be-
hind my choices. On each subsystem, I started on the
most difficult part; the one with the largest number
of known unknowns. For term searching, this was
the data structure and the associated code. I needed
a structure where I could quickly search (thousands
of times for each processed page) for a page’s words
and phrases matching one of the millions of Wiki-
pedia entries. For this, the structure should be com-
pact enough to fit in memory, yet flexible to allow
for longest-prefix matching—a tall order. Once I
had solved this low-level problem (by using a space-
optimized version of a Patricia tree), designing an
API and building the indexing tools were easy.

Similarly, the most difficult problem in the page-
processing part was the HTML parsing. On the
basis of Postel’s law, “be conservative in what you
do; be liberal in what you accept from others,” code
that processes Web pages should be able to parse

Diomidis Spinellis

Start with the
Most Difficult Part

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on February 25, 2009 at 08:07 from IEEE Xplore. Restrictions apply.

 March/April 2009 I E E E S o f t w a r E 71

TooLS of THe TraDe

anything that remotely looks like HTML. In my
system I had to do this efficiently for the very nar-
row task of recognizing word sequences that could
be linked to Wikipedia. In this case, the high-level
interface and the lower-level word search and re-
placement code were considerably easier, so I ended
up starting in the middle.

Finally, when the time came to implement the
Web front end, I initially experienced writer’s block,
not knowing where to start. I realized I had no clear
understanding of how the various pieces would fit
together: how to obtain the Web request’s param-
eters (to which language’s Wikipedia to link, and
what character encoding to use), when to retrieve
the page, what to do with the HTTP header I re-
ceived, and how to construct the response’s header.
I escaped this impasse only when I designed the
functionality in a top-down fashion, a choreogra-
phy that I expressed in just nine lines of high-level
C++ code. Once I had those lines in front of me, I
could easily see what each part would need to do.
When I was ready to code the low-level functional-
ity, the actual mechanics of setting up socket com-
munications and talking HTTP were (almost) bor-
ing details.

... and Its advantages ...
Starting with the most difficult part has three main
advantages. The most important concerns the man-
agement of design constraints. On a blank sheet
of paper, the constraints we face are minimal, but
each design decision imposes new restrictions. By
starting with the most difficult task, we ensure that
we’ll face the fewest possible constraints and there-
fore have the maximum freedom to tackle it. When
we then work on the easier parts, the existing con-
straints are less restraining and can even give us
helpful guidance.

For instance, when I designed the search data
structure in a bottom-up fashion, I realized that
choosing the UTF-8 variable-length character en-
coding had significant advantages in terms of space
and time efficiency. Had I started my work top-
down by specifying an API that mandated the use of
wide characters, I might have needlessly constrained
my choice of the data structure. In contrast, when
designing the Web front end, having various ill-
fitting pieces of functionality would make it more
difficult to assemble them into an efficient whole.
So in that case, top-down design was appropriate.

The second advantage is the early shrinking of
the project’s cone of uncertainty. Any development
project involves elements that we don’t know at the
beginning and discover as we progress. By putting
the most difficult (and consequently risky) part
quickly behind us, we rapidly minimize the project’s
unknowns and can therefore make more informed

and intelligent decisions regarding budget, progress,
staffing, and functionality.

The final advantage has to do with human na-
ture. At a project’s beginning, we have the highest
levels of enthusiasm and motivation; at later stages
we can expect some disillusionment and even burn-
out. By starting with the most difficult part, we
ensure that we undertake it with a positive can-do
attitude rather than a defeatist spirit. We can even
apply this principle on a smaller scale by schedul-
ing difficult work early in the day when the mind
is clear and distractions are minimal. Plan boring
meetings where they belong: at the end of the day.

... further applied
You can also apply the principle I’ve described
when ordering elements of the software life cycle:
requirements elicitation, high- and low-level design,
coding, debugging, testing, and maintenance. Yes,
if you’re venturing into an unknown application
territory, start by gathering requirements. Change
your plan, however, if you know approximately
what you need to do, you have a good communi-
cation channel with your users, and the most dif-
ficult part of the project is, for instance, how you’ll
display a complex data set. In this case, your prob-
lem is not the project’s requirements but its render-
ing functionality. Therefore, spend some time ex-
perimenting with what you can achieve with, say,
OpenGL or Ajax. Then, when you’re discussing
requirements with your users, you can steer them
toward the technically achievable directions rather
than letting them specify functionality that will be
costly to implement.

Along the same lines, if you think that testing
will be more difficult than low-level coding (it fre-
quently is in many application domains), start by
writing your test cases. If you believe that main-
taining your system will involve a lot of effort, plan
ahead by designing a domain-specific language that
will simplify the most common maintenance tasks.
If your design involves a large API, sketch its con-
ventions before specifying its actual elements. If you
think your code will need a lot of debugging, liber-
ally sprinkle assertions, logging, and hooks.

The list goes on. Whatever you do, just remem-
ber: start with the most difficult part.

Diomidis Spinellis is an associate professor in the Department of
Management Science and Technology at the Athens University of Econom-
ics and Business. He recently coedited Beautiful Architecture (O’Reilly,
2009). Contact him at dds@aueb.gr.

 Any
development

project
involves

elements that
we don’t know

at the beginning
and discover as
we progress.

Post your comments online by visiting the column’s blog:
www.spinellis.gr/tools

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on February 25, 2009 at 08:07 from IEEE Xplore. Restrictions apply.

