
14 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0 © 2 0 0 9 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

M
y colleague, who works for a major
equipment vendor, was discussing how
his employer was planning to lay off
hundreds of developers over the com-
ing months. “But I’m safe,” he said, “as
I’m one of the two people in our group

who really understand the code.” It seems that writ-
ing code that nobody else can comprehend can be

a significant job security booster.
Here’s some advice.

Unreadable Code
Start by focusing on your code’s
low-level details. Nothing puts
off maintainers trying to take
over your job than code that
brings tears to their eyes. Be in-
consistent in all aspects of your
code: naming, spacing, indent-

ing, commenting, style. Every time there are mul-
tiple ways to implement something, throw dice
and choose at random. Avoid writing similar code
in comparable situations. Spend time coming up
with coding tricks that nobody has ever used.
Why write a = 0 when you can write a ^= a? Apply
this advice liberally in the way you format expres-
sions and statements. There’s only one generally
accepted way to space between operators and op-
erands; avoid it. Control flow statements are more
fun because there are two schools on where to put
braces; randomly switch between them to throw
people off.

Unfortunately, these tricks won’t get you far,
because beautifiers can readily bring your code
up to scratch. However, when naming your vari-
ables, methods, fields, and classes, your choices
can persist for decades; think of the Unix creat
(sic) system call. Some languages, such as Java,
have well-established naming conventions re-

garding capitalization and the joining of words.
View them as an opportunity; these rules were
designed to be broken. In other languages, such
as C++, naming conventions are already severely
broken or nonexistent. In this case, you can
make your mark by using new names for exist-
ing concepts. For instance, name the methods for
an iterator’s range start and finish, rather than begin
and end. Further innovate by making those ranges
symmetric rather than following the customary
asymmetric style.

You might think that simply avoiding com-
ments is the way to go, but you can do a lot bet-
ter than that. If you change already-commented
code, leave the existing comments in place with-
out updating them. This is a sure way to send your
code’s hapless readers on a wild-goose chase. Sur-
prisingly, IDEs can also help you here. Many IDEs
insert boilerplate comments at the beginning of
each method and class. Keeping them there un-
filled occupies valuable screen real estate, making
your code harder to follow. Even better, this or-
derly boilerplate gives the initial impression that
the code is well commented, thus increasing the
unavoidable subsequent disappointment.

Painful Changes
Regrettably, many of the tricks I’ve discussed so
far can be overcome by the unfortunate practice
of refactoring. This allows a determined killjoy
to slowly but surely improve your code’s quality.
Guard against such accidents, while making the
code even more unmaintainable, by ensuring that
code changes really hurt. Modern languages have
brought with them the disturbing habit of declar-
ing a specialized type for each different entity you
want to model in the code. Worryingly for you,
this can make changes particularly easy, because
after a change the compiler will automatically

Diomidis Spinellis

Job Security

Post your comments online
by visiting the column’s blog:
www.spinellis.gr/tools

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on October 21, 2009 at 03:52 from IEEE Xplore. Restrictions apply.

 September/October 2009 I E E E S o f t w a r E 15

ToolS of The TraDe

detect any nonmatching types. You can code
around this problem by representing most data
as plain numbers and strings. When you need to
group more entities together, just separate them
in the string with a delimiter or twiddle an inte-
ger’s bits using the language’s binary operators.
Also, give a special meaning to negative numbers
and, of course, zero.

Some programmers have developed the nasty
habit of adding assertions in their code. Avoid
these constructs like the plague. They tend to pro-
vide an early warning when an algorithm or a
class’s state has gone south, depriving everybody
of the opportunity for countless interesting hours
of debugging. The same goes for providing unit-
testing support.

Puzzling Interactions
An additional way to ensure your code is and re-
mains unmaintainable is to booby-trap it, so that
nobody (but, hopefully, you) can foresee a change’s
effects. The keyword here is coupling—the more,
the better. Some types of coupling between mod-
ules are truly devious. For instance, you can have
two classes implicitly share knowledge of data
formats and protocols, or have one class modify
another’s internal workings. For this to work, it
helps if you declare all variables, fields, and meth-
ods with the widest possible visibility. Use globally
visible static fields to good effect, communicating
through them as if they were global variables, and
make your code change its behavior depending on
their value. For added points, have a class’s meth-
ods behave differently depending on the order
in which they’re called, and pass data around in
large chunks, even if a method requires only a tiny
bit of it. This will prompt your code’s readers to
come to you to find out which part of the data is
really needed.

Byzantine Design
There’s also ample scope to tie your job security
right into the code’s design. Deep and wide in-
heritance trees; useless abstraction layers (if any-
one dares to ask, claim they might be needed in
the future); and incestuous, seemingly random,
interactions between classes are your tools of the
trade. Also, lumping together many responsibili-
ties in each class will make it easier for you to
create surreptitious links between seemingly un-
related elements. For added effect, make depen-
dencies between packages follow the path of un-
stable dependencies: everybody should depend on
packages whose interfaces change at the slightest
provocation. Earn bonus points by introducing
some cyclical dependencies so that changes cas-
cade in a loop.

Icing the Cake
You can ensure that nobody will want to take
your job, even without messing with your code.
If the project takes hours to build (doesn’t sup-
port incremental builds), other developers will
stay away. Similarly, lack of a test infrastructure
will make even the most trivial changes a risky
proposition. Nevertheless, if some brave souls
manage to build and (manually) test your code,
ensure that they won’t be able to release it. Make
the project’s release a manual, lengthy, undocu-
mented, and highly complex procedure that only
you can pull off.

By now, you surely realize that providing any
external documentation, especially those types
that are automatically kept up to date, is a big
no-no. People should come to you for help. Using
a version control system is also problematic be-
cause this can leak valuable information regard-
ing the code’s evolution.

Team effort
Creating bad code often requires team effort. By
hiring people who write awfully, you can increase
the magnitude of the code base on which your job
security depends a lot more effectively than you
could on your own. Even better, these developers
typically also have difficulty understanding well-
written code, further strengthening the case for
retaining you. If you’re lucky, they’ll bring their
similarly mediocre friends to the team, institution-
alizing the practice of writing code that nobody
wants to touch. If you’re not responsible for hiring
decisions, make sure your manager understands
that hiring many low-paid, dreadful developers is
vastly preferable to hiring a few good ones.

Don’t waste any time or resources training, tu-
toring, or mentoring young recruits. Instead, in-
timidate them by dumping a mountain of undocu-
mented code on them and let them grapple with
it. When they turn to you for help or, even bet-
ter, leave for another job, you’ll appear even more
indispensable.

O f course, the effort toward job security can
go too far. A company facing unmaintainable
code can simply abandon the specific product

(firing its obviously appalling development team)
or, failing to keep up with the competition, even
go under. The pity is that nobody will shed a tear
for the horrible code that will be left behind.

Diomidis Spinellis is a professor in the Department of Manage-
ment Science and Technology at the Athens University of Economics and
Business. He’s also a four-time winner of the International Obfuscated C
Code Contest and the author of Code Quality: The Open Source Perspective
(Addison-Wesley, 2006). Contact him at dds@aueb.gr.

Creating
bad code

often requires
team effort.

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on October 21, 2009 at 03:52 from IEEE Xplore. Restrictions apply.

