
10	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

A
generous car reviewer might praise a ve-
hicle’s handling by writing that it turns
as if it’s running on railroad tracks. In-
deed, tracks offer guidance and support.
When you run on tracks you can carry
more weight, you can run faster, and you

can’t get lost. That’s why engineers, from early
childhood to old age, get hooked on trains. Can

we get our software to run on
tracks?

There are various tools that
can give our software this abil-
ity: tools that increase the accu-
racy and speed of software de-
velopment, by forcing it to glide
on a firm foundation, keeping
it away from risky unexplored
territory. These tools span the
complete spectrum of software

building: from better programming abstractions
to automated processes.

Types
The main tool for guiding the code’s direction is
the language’s type system: a trusted friend who
doesn’t allow us to swerve in dangerous direc-
tions. That’s why programs written in languages
with a powerful type system, like Haskell, often
work error-free once they pass the compiler’s ex-
acting checks. In contrast, using integers to rep-
resent anything from Boolean values, to enumer-
ations, to file descriptors, to array indices, as is
typically the case in C code, is a potent source of
bugs. Similarly, when we program by randomly
assembling functions and procedures, as is the
case in many languages that don’t enforce design
abstractions for code, we will run into problems
once the program’s size exceeds what can fit in
our mind.

At the level of values, we can let the type sys-
tem help us by establishing a separate type for
each distinct class. The Microsoft Windows Soft-
ware Development Kit defines more than 41,000
hexadecimal constants, FreeBSD (Berkeley Soft-
ware Distribution) Unix almost 20,000, the
GNU/Linux distribution I’m using 26,000. Con-
sequently, I’m sure that every day some hapless
programmer passes the wrong value to the wrong
function, and then struggles to find out why it
failed. Encapsulating these constants inside sepa-
rate classes would let the type system catch these
silly mistakes. Array indices, iterators, and even
pointers are preferable to integers, because the al-
ternatives carry the type of array they index, al-
lowing the compiler to verify we’re accessing the
correct array.

When dealing with code, the type system can
again stand by our side. Each time we specify a
new class in terms of an interface or an abstract
class, the compiler will ensure that we won’t for-
get some crucial methods. A missing method will
instantly trigger an error message. As an addi-
tional benefit, we minimize dependencies, be-
cause the interface’s clients don’t need to know
about related implementations. That’s why the
Gang of Four advocates programming to an in-
terface, not an implementation.

Interestingly, dynamic languages that lack so-
phisticated static type checking, like Ruby, Py-
thon, and Perl, can offer remarkable boosts in
productivity. In their case, expressiveness leads
to development speed that creates inertia, and
this is another force that keeps the software on
its tracks. However, this advantage holds only
as long as the relevant code can fit in our head.
Otherwise, the tracks are comprehensive tests
that won’t allow a runaway script to veer off its
course.

Diomidis Spinellis

Software Tracks

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

	 March/April 2010 I E E E S O F T W A R E 	 11

TOOLS OF THE TRADE

Domain-Specific Solutions
With domain-specific languages we can
efficiently express exactly what their de-
signer intended and nothing more. I’ve
found that the limits a domain-specific
language places on its code are just as
important as its expressiveness and con-
ciseness. When the code only allows
certain operations and expects some
mandatory elements, it’s easy to commu-
nicate this restriction to our client. This
keeps frivolous requirements in check,
ensures completeness, and results in a
product that’s easy to learn, use, and
maintain. For instance, the quality of
the Unix, Perl, and Java reference docu-
mentation owes a lot to the domain-spe-
cific languages used for writing it (man,
POD, and javadoc).

A related approach involves imple-
menting the domain-specific language
through a code-generating wizard. In
this case the language consists of our an-
swers to each of the wizard’s questions;
the equivalent of a conversation with
the dreaded interactive voice response
systems that pass for customer support
these days. However, under this alterna-
tive we can’t easily review our responses
or put them under version control; our
specifications end up as unintelligible and
unmaintainable code. As an example,
the Visual Studio 2008 MFC (Microsoft
Foundation Classes) Application Wizard
will create an empty project of 3,700 C++
lines, 30 files, and 10 classes in seconds.
Think of wizards as the fake trains that
shuttle tourists around on roads in some
tourist destinations: they combine the dis-
advantages of a car with those of a train.

Sometimes, a software train’s particu-
lar direction is so straightforward that we
can express its evolution simply through
data. We first invest in code logic that
lets us express common modifications
and additions as changes to a data struc-
ture. This data can reside in an XML file,
a database, or even constants initialized
through code. For instance, the bulk of
the Firefox user interface is written in
XUL—the XML User Interface Lan-
guage—while Wikipedia’s stylish info
boxes are written as text templates. Un-
der this approach, all that’s needed to add
new functionality is to write data in the
predefined format, a process typically less
error-prone than programming.

Architectures
At a higher level, architectures offer us
another way to guide a software’s prog-
ress. A representative case involves sys-
tems designed around plug-ins. Anything
that can be expressed in a plug-in is easy
to add and integrate in the software’s
distribution. Other changes to the soft-
ware, or, heaven forbid, modifications
to the plug-in interface are so difficult
that only a selected few will implement
them. Thus, the system’s evolution stays
on track, propelled by the changes that
are easy to implement (often without the
involvement of its core team) in the di-
rection established by the plug-in inter-
face. Noteworthy examples include the
hundreds of plug-ins that come with the
GIMP raster graphics editor, the Eclipse
integrated development environment,
and the FindBugs static analysis error
checker for Java code. In all cases, crafty
developers would drool to mess with the
code adding, say, a light-saber effect to
GIMP or a detector for their favorite bug
to FindBugs. The plug-in-based archi-
tecture of these systems ensures that the
core code stays squeaky clean, while ad-
ditions in the software’s preferred direc-
tion of change evolve organically based
on their merits without compromis-
ing the system’s design or adding tricky
interdependencies.

Other architectural styles that enforce
a particular open-ended but well-defined
interface can serve the same purpose. Ex-
amples include the blackboard, pipes and
filters, representational state transfer, and

rule evaluation architectures. Look at a
large successful software system and be-
neath it you’ll find an architecture that’s
kept its evolution on track.

Processes
Finally, consider the most flexible track-
laying tool of all, the software develop-
ment process. Because this type of track
is often laid out through words, overen-
thusiastic managers sometimes abuse
their mandate, prescribing burdensome
and bureaucratic processes—seldom the
way to great software. Yet, an appropri-
ate software process can form the high-
speed rail that links all the regional tracks
together. It will ensure that we don’t miss
requirements, that our architecture binds
efficiently all the software components to-
gether, that developers write high-quality
code, that our artifacts are well docu-
mented, and that the software’s releases
and maintenance tasks run with the ac-
curacy and speed of the Swiss railroad.
A key factor for nailing down processes
is tool support. Most developers hate op-
pressive processes, but love tools: talk to
them about the configuration manage-
ment activity model and they’ll yawn, ask
them to choose between Git and Subver-
sion and they’ll debate all night.

Fortunately, nowadays it’s easy to use
tools to guide and support any part of
the development process. For instance,
with periodic automated builds we ensure
that our software is always in a consis-
tent state, through issue-tracking systems
we can monitor our progress, and we can
control maintenance with remote updates
and bug reports.

So when your development faces un-
certainty, a lack of direction, escalating
problems, and lots of pesky bugs, step
away from the minutiae and look at the
big picture. Think back to your first rail-
road set and come up with tools that can
bring your project, as it were, back on
track.

Diomidis Spinellis is a professor in the Department of
Management Science and Technology at the Athens University
of Economics and Business. Currently he is serving as the
Secretary General responsible for information systems at the
Greek Ministry of Finance. Contact him at dds@aueb.gr.

Post your comments online by visiting the column’s
blog: www.spinellis.gr/tools

Look at a large
successful software
system and beneath

it you’ll find an
architecture that’s kept
its evolution on track.

