
SDriver: Location-Specific Signatures

Prevent SQL Injection Attacks∗†

Dimitris Mitropoulos
Department of Management Science and Technology

Athens University of Economics and Business
dimitro@aueb.gr

Diomidis Spinellis
Department of Management Science and Technology

Athens University of Economics and Business
dds@aueb.gr

Abstract

sql injection attacks involve the construction of application input data
that will result in the execution of malicious sql statements. Many
web applications are prone to sql injection attacks. This paper pro-
poses a novel method for preventing this kind of attacks by placing a
database driver proxy between the application and its underlying rela-
tional database management system. To detect an attack, the driver uses
stripped-down sql queries and stack traces to create sql statement sig-
natures that are then used to distinguish between injected and legitimate
queries. The driver depends neither on the application nor on the rdbms
and can be easily retrofitted to any system. We have developed a tool,
sdriver, that implements our technique and tested it successfully on sev-
eral web applications.

1 Introduction

Traditionally, most programmers have been trained in terms of writing code that
implements the required functionality without considering its many security as-
pects [16]. It is very common, for a programmer, to make false assumptions
∗Computers and Security, 2009. DOI:10.1016/j.cose.2008.09.005
†This is a machine-readable rendering of a working paper draft that led to a publication.

The publication should always be cited in preference to this draft using the reference in the
previous footnote. This material is presented to ensure timely dissemination of scholarly
and technical work. Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author’s copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder.

1

about user input [28]. Classic examples include: assuming only numeric char-
acters will be entered as input, or that the input will never exceed a certain
length.

sql injection attacks comprise a subset of a wide set of attacks known as code
injection attacks [18, 2]. Code injection is a technique to introduce code into a
computer program or system by taking advantage of the unchecked assumptions
the system makes about its inputs [31].

Many web applications have interfaces where a user can input data to inter-
act with the application’s underlying relational database management system
rdbms. This input becomes part of an sql statement, which is then executed
on the rdbms. A code injection attack that exploits the vulnerabilities of these
interfaces is called an “sql injection attack” (sqlia) [6, 25, 16, 27]. There
are many forms of sql injection attacks. The most common involve taking
advantage of:

• incorrectly passed parameters,

• incorrectly filtered quotation characters, or

• incorrect type handling.

With this kind of attacks, a malicious user can view sensitive information,
destroy or modify protected data, or even crash the entire application [1]. Con-
sider a trivial example that takes advantage of incorrectly filtered quotation
characters. In a login page, besides the user name and password input fields,
there is usually a separate field where users can input their e-mail address, in
case they forget their password. The statement that is probably executed can
have the following form:

SELECT ∗ FROM passwords WHERE email =
’theemailIgave@example.com’;

If an attacker, inputs the string anything’ OR ’x’=’x, she could conceivably
view every item in the table. In a similar way, the attacker could modify the
database’s contents or schema.

An “incorrect type handling” attack occurs when a user-supplied field is
not strongly typed or is not checked for type constraints. For example, many
websites allow users, to access their older press releases. A url for accessing
the site’s fifth press release could look like this [24]:

http://www.website.com/pressRelease.jsp?RelID=5

And the statement that is probably executed is:

SELECT description, issuedate, body FROM pressRel WHERE RelID = 5

If some attackers wished to find out if the application is vulnerable to sql
injection, they could change the url into something like:

http://www.website.com/pressRelease.jsp?pressReleaseID=5%20AND%201=1

2

SQLIA
countermeasures

D y n a m i c Stat ic

Runtime taint ing
[10,30]

Query modi f ica t ion
[4,5,25]

Learn ing
[20,26] SDr iver

Hybr id
[21,13,12]

Secure cod ing prac t ices
[27,16]

New APIs
[7 ,22]

Analys is
[28,9,29]

Figure 1: A taxonomy of sqlia countermeasures

If the page displayed is the same page as before, it is clear that the field RelID is
not strongly typed and end users can manipulate the statement as they choose.
Note that, while the first attack could be countered by filtering out the quotation
characters from the input data, countering the second attack would require code
to ensure that the input data is a single integer. According to vulnerability
databases like cve (Common Vulnerabilities and Exposures)1 sqlia incidents
have increased significantly over the last years.

2 Countering SQL Injection Attacks

A taxonomy of sqlia countermeasures appears in Figure 1. Static approaches
detect or counteract the possibility of an sqlia at compile time, while dynamic
approaches perform this task at runtime. Note that both approaches may re-
quire the analysis or modification of an application’s source code.

On the static front an often repeated mantra is the adoption of secure cod-
ing practices [27, 16]. Most sql injection attacks can be prevented by passing
user data as parameters of previously prepared sql statements instead of inter-
mingling user data directly in the sql statement. For example, the statement
we examined previously, could be passed to the database with a question mark
used as a placeholder for the parameter, and a separate type-checked api call
could be used for setting the first parameter of the sql statement to the desired
value. In Java, this would be accomplished by the following method calls.

PreparedStatement pstmt = con.prepareStatement(
”SELECT description, issuedate, body FROM pressRel” +
”WHERE RelID = ?”);

pstmt.setInt (1, 5);

These practices can indeed increase the robustness of applications. However,
experience has shown us that the expectation for them to be embraced to the
extent of completely eliminating security vulnerabilities is just wishful thinking.

An alternative approach involves the introduction of type-safe program-
ming interfaces, like dom sql [22] and the Safe Query Objects [7]. Both

1http://cve.mitre.org/

3

eliminate the incestuous relationship between untyped Java strings and sql
statements, but don’t address legacy code, while also requiring programmers to
learn a radically new api.

An approach that deals with existing code and coding practices involves
the static analysis of the application’s source code to locate sql statement
invocations that are considered unsafe [28, 9, 29]. While the impact of tools
based on these methods on development and deployment processes is minimal,
their accuracy and scope is reduced by the complexity of modern web-based
application frameworks. For instance, recent work by Wassermann and Su [29]
proposes a sound and precise approach, which however depends on specifying the
semantincs of all php string functions. (The implementation described contains
specifications for 243 functions.)

On the dynamic front runtime tainting approaches enforce security poli-
cies by marking untrusted data and tracing its flow through the program. For
instance the system by Xu et al. [10] covers applications whose source code
or their interpreter is written in C, while the work by Haldar et al. [30] tar-
gets Java code. These approaches generally require significant changes to a
language’s compiler or its runtime system.

Another dynamic approach involves query modification. Here the modi-
fied query is either reconstructed at runtime using a cryptographic key that is
inaccessible to the attacker [4], or the user input is tagged with delimiters that
allow an augmented sql grammar to detect sqlias [5, 25]. Both approaches
require significant source code modifications.

Training approaches are based on the ideas of Denning’s original intru-
sion detection framework [8]: they record and store valid sql statements and
thereby detect sqlias as outliers from the set of valid statements. An early
approach, didafit [20] recorded all database transactions. Subsequent refine-
ments tagged each transaction with the corresponding application [26]. Our
system further improves on these techniques by automatically determining pre-
cisely each query’s location through its stack trace.

Finally, some approaches combine a static analysis with runtime monitoring.
For instance, amnesia, associates a query model with the location of each query
in the application and then monitors the application to detect when queries di-
verge from the expected model [13, 12]. A more general hybrid approach involves
the location of sqlias using the program query language pql [21]. The pql
queries are evaluated through both a static analysis and the dynamic monitoring
of instrumented code. These approaches, although complex to implement, seem
to offer an additional margin of protection against false positives and negatives.

Readers looking for a more detailed survey of sql injection attacks and the
corresponding countermeasures can turn to the recently published survey by
Halfond and his colleagues [14].

In this paper we propose a novel technique of preventing sqlias. Our tech-
nique incorporates a driver that stands between the web front-end and the back-
end database. The key property of this driver is that every sql statement can
be identified using the query’s location and a stripped-down version of its con-
tents. By analyzing these characteristics during a training phase, we can build a

4

Figure 2: The architecture of our proposed driver

model of the legitimate queries.2 Then at runtime our driver checks all queries
for compliance with the trained model and can thus block queries containing ad-
ditional maliciously injected elements. The work reported here builds upon an
earlier prototype [23] with a more robust sql processing technique, significant
performance improvements, and more extensive validation experiments.

3 A Signature-Based Proxy Driver

The architecture of typical tiered web applications consists of at least an appli-
cation running on a web server and a back-end database [28]. Between these two
tiers, there is in most cases a database connectivity driver based on protocols
like odbc (Open Database Connectivity) or jdbc (Java Database Connectivity).
The main function of such a driver is to provide a portability layer by obtaining
sql statements from the application and forwarding them to the database. The
driver that we propose is also a connectivity driver that operates however as
a shim or proxy standing between the application and the database interface
driver (see Figure 2). Our driver is transparent: its only role is to prevent sqlia,
and it depends neither on the application, nor on the underlying connectivity
driver.

To work as a connectivity driver, our driver implements the complete inter-
face of the connectivity protocol. However, most of the driver’s methods simply
forward the request to the underlying connectivity driver. Only a few methods
capture and process requests in order to prevent sqlias. In this respect our

2From now on we will often use the term “query” to denote all sql statements. Although
sql data manipulation, definition, and control statements are not queries, using the term
“query” avoids confusion between the sql statements and the statements of the general pur-
pose programming language where sql elements are often embedded.

5

driver acts as a proxy for the underlying driver working as a firewall between
the original driver and the application.

In order to secure the application from sqlias the driver must go through a
training phase. This involves executing all the sql queries of the application so
that the driver can identify them in a way we will show in the next section. Then,
the driver’s operation can shift into production mode, where the driver takes
into account all the trained legitimate queries to prevent sqlias by detecting
and blocking them.

3.1 Training Mode

Every sql query of an application is identified through a signature created by
combining three of its characteristics.

1. The method invocation stack trace. This includes the details of all meth-
ods and call location, from the method of the application where the query
is executed down to the target method of the connectivity driver.

2. The sql keywords.

3. The tables and the fields that the query uses in order to retrieve its results.

By combining all the fixed elements of each query with its invocation method’s
stack trace, we obtain a unique identifier—signature—for all the legitimate
queries of an application. A formal representation of the application’s signa-
tures that should be accepted as legitimate is the following: If during an appli-
cation’s normal (non-attacked) run, K is the set of method stack traces at the
point where an sql statement is executed; L is the set of the corresponding sql
keyword names; M the set of the corresponding database table names, and N
the set of the corresponding table field names, the set of the legitimate query
signatures S is defined as follows:

S = {ω : ω = (k, a1, a2, ...), k ∈ K, ai ∈ (L ∪M ∪N)} (1)

When the system operates in the training mode, each query signature Q is
added to S. In production mode a query with a signature Q is considered legal
iff Q ∈ S. Obviously, a query cannot be unambiguously identified by using just
one of the above characteristics, such as the query’s keywords, and this is why
all of them are combined into a tuple.

To combine these characteristics, when a query is being sent to the database
our driver carries out two actions. First, it strips down the query, removing all
numbers and string literals. So if the following statement is being executed

SELECT table1.field1 FROM table1 WHERE table1.field2 = ’foo’ AND
table1. field3 > 3

the driver removes ’foo’ and 3 from the query string.
The driver also traverses down the call stack, saving the details of each

method invocation, until it reaches the statement’s origins. The association of

6

stack frame data with each sql query—a process that to the best of our knowl-
edge is unique to our approach—is an important defense against maliciously
crafted attacks that try to masquerade as legitimate queries.

As an example, consider an application that will send the password for a
forgetful user, Alice, via email by executing

SELECT password from userdata WHERE id = ’Alice’

This same application could allow users to lock their terminal, but allow the
unlocking either with the user’s password or with the administrator password
(the 4.3 bsd lock command behaved in this peculiar way). The corresponding
query to verify the password on the locked Alice’s workstation would be as
follows.

SELECT password from userdata WHERE id = ’Alice’ OR id = ’admin’

It is now easy to see that a malicious user, Bob, could obtain the admin-
istrator’s password by email by entering on the password retrieval form as his
user identifier

nosuchuser’ OR id = ’admin

Without the differentiating factor of a stack trace, the preceding query would
have the same signature as the one used for unlocking the terminal, and would
therefore escape a traditional signature-based sqlia protection system.

Our initial design had sdriver storing each query’s keywords, table names,
and stack trace into separate tables of an auxiliary database. During implemen-
tation we realized that, because the only operations we were interested in were
adding a query Q to the set of known queries S and testing whether Q ∈ S, we
could substitute the full signature S with its hash. This substitution is valid,
because sdriver operates under the premise of best effort rather than absolute
correctness [15]. Therefore, the stack trace and the stripped down query are
concatenated and the driver applies a hash function on them to form the stored
form of the query signature. When the system is operating in training mode, all
the signatures are saved in an auxiliary database table, so that when the system
operates in production mode the driver can check whether a query is legitimate
or not. This is done off-line since an on-line training could lead to disputable
signatures. Specifically, if an attack is attempted the generated signature is
going to be stored as a legitimate one putting the system’s operation at risk.

3.2 Production Mode

The driver’s functionality during the production mode does not differ signifi-
cantly from the one in the training mode. The steps are the same until the driver
derives the query’s signature. At that point, the driver consults the database
table of saved query signatures to verify that the query is legal. This interaction
though, happens in an indirect way as we describe in Section 5.2. If the driver
identifies it as a legitimate one then the query passes through. If it does not,
then the application is probably under attack. In such a case the driver can

7

Figure 3: sdriver’s architecture

halt the application with an exception, it can log an error message, or it can
forward an alarm to an enterprise-wide intrusion detection system.

As an example, consider an attack that takes advantage of incorrectly filtered
quotation characters. The additional keywords that the malicious user injects
will definitely lead to an unknown signature. In this case the driver becomes
aware of the attack and prevents it.

4 Java Platform Implementation

We have implemented our solution in the Java platform, but implementations in
other operating environments are certainly feasible. The secure database driver,
which we call sdriver, acts as a jdbc driver wrapped around other drivers that
implement a database’s jdbc protocol (see Figure 3).

4.1 Proxy Interface

Jdbc drivers known as “native-protocol drivers”3 (or type 4 jdbc drivers) con-
vert jdbc calls directly into the vendor-specific database protocol. At the
client’s (application) side, a separate driver is needed for each database. sdriver
does not depend on the application or the native driver and it is placed between
them. To accomplish that, the application must be modified in a single position:
in the location where the application establishes a connection with a driver. For
the application to be secured, the sdriver must establish a connection with the
driver that the application is meant to use. To achieve that, we pass the driver’s
name through the url of the original connection (see Figure 3). For example, if

3http://java.sun.com/products/jdbc/driverdesc.html

8

manageQuery(String query) {
signature = getQuerySignature(stripQuery(query));
if (inSignatureTable(signature))

return;
if (inTrainingMode)

// insert signature into the signature table
else {

// issue an alarm or raise an exception
// write query to a log file

}
}

stripQuery(String query) {
query = removeQuotedStrings(query);
query = removeNumbers(query);
query = removeComments(query);

}

getQuerySignature(String query) {
for (StackTraceElement ste : stackTrace)

signature.append(ste);
signature.append(query);
return MD5(signature);

}

Figure 4: The operation of sdriver

the application is meant to connect to the Microsoft sql Server 2000 the source
code would look like this:

Class.forName (”com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn=DriverManager.getConnection(

”jdbc:microsoft: sqlserver :// localhost :1433;databasename=MyDB”,
”username”, ”password”);

The modified code for using the sdriver would be:

Class.forName (”org.SDriver”);
Connection conn = DriverManager.getConnection(

”jdbc:com.microsoft.jdbc. sqlserver .SQLServerDriver:” +
”microsoft: sqlserver :// localhost :1433;databasename = MyDB”,
”username”, ”password”);

9

4.2 Implementation Details

sdriver is not a classic native-protocol rdbms driver. The implementation of
most of the driver’s methods simply involves calling the corresponding methods
of the underlying driver. Only a few methods from those that a native-protocol
driver implements pass sql code through them, and can therefore be used to
launch an sqlia. These methods are the various forms of addBatch, execute,
executeQuery, and executeUpdate. To secure applications against sqlias,
sdriver interposes itself in these methods examining the query string that is
about to be executed. For this examination to take place, sdriver follows the
steps of the pseudocode listed in Figure 4.

Figure 3 shows that sdriver depends on another database component called
ssql. This works as the signature data store.

One of the tricky parts of the sdriver implementation is the code that tra-
verses the application’s stack. Perversely, in Java the way to access the stack
frames is to create an object of type Throwable. The class Throwable is the
superclass of all errors and exceptions in Java. To aid the display and debug-
ging of exceptions Throwable objects support a method called getStackTrace,
which returns an array of stack frames. Each stack frame provides methods for
obtaining the corresponding file name, method name, and line number. The
following listing shows the contents of a stored stack trace:

com.SStatement.getQuerySignature(SStatement.java:556)
com.SStatement.manageQuery(SStatement.java:489)
com.SStatement.executeQuery(SStatement.java:430)
beans.querybean.selection1(querybean.java:20)...

Every stack element contains information about a method invocation including
the method name, the package, the file, and the line number. The first method
will always be getQuerySignature because it is the one that traverses the call
stack. The element that participates more in the diversity of a signature is
typically the fourth one: the application’s method that directs the connectivity
driver to pass the query to the database.

5 Evaluation

The success of any system claiming to improve security typically depends on the
accuracy of its results (often measured in terms of false positives and negatives)
and on its cost in terms of deployment, operation, and maintenance.

5.1 Accuracy

We evaluated the accuracy of sdriver through three experiments: a synthetic
benchmark, a notoriously insecure application, and a bundle of previously eval-
uated real-world applications.

Our synthetic benchmark was a jsp application with the same technical
characteristics as those described in reference [4]. This application allowed a

10

user to inject SQL into a “where” clause with no input validation, and retrieve
information concerning application data. After placing sdriver between the
application and the database, the attack was successfully prevented.

We then searched for a real-world web application that had a record of being
vulnerable to sqlias. According to the common vulnerability database cve and
the security bulletin providers us-cert,4 Secunia,5 and Armorize Technologies,6

a notoriously vulnerable application is Daffodil crm 1.5.7 In Daffodil 1.5, remote
attackers could execute arbitrary sql commands via unspecified parameters in a
login action. In particular, users wanting to access Daffodil had to fill-in a simple
username and password form. By using a sqlia similar to the one we presented
in Section 1, an unauthorized user could access administrator facilities. sdriver
recognized and blocked the attack, without otherwise interfering with Daffodil’s
operation.

Finally, we selected five real-world web applications that have been used in
the literature for previous evaluations 8 [11, 25]. We attempted a wide variety
of attacks based on incorrectly filtered quotation characters, incorrectly passed
parameters, untyped parameters, tautologies, and others [1, 14].

Table 1 shows, for each web application, the number of the signatures stored
in the sdriver database after training, the number of unsuccessful attacks (at-
tacks that did not get past the application’s defenses), the number of successful
attacks (attacks that could potentially compromise the application), and the
number of attacks prevented by sdriver, in absolute terms and as a percentage
over the total number of successful attacks. The table’s columns follow the
labeling introduced in reference [11].

Application Signatures Unsuccessful Successful Prevented
synthetic benchmark 21 55 29 29 (100%)
daffodil 72 77 27 27 (100%)
bookstore 168 288 39 39 (100%)
classifieds 122 270 37 37 (100%)
employee directory 61 207 31 31 (100%)
events 65 115 29 29 (100%)
portal 156 312 49 49 (100%)

Table 1: sdriver’s Precision

While testing, we realized that the five previously evaluated applications
shared a common feature: in a misguided attempt to avoid sqlias, they scanned
user input for single quotation marks and replaced them with double quotation
marks. This technique masked the sqlia problem, but introduced a data leakage

4http://www.us-cert.gov/
5http://secunia.com
6http://www.armorize.com
7Daffodil can be obtained from http://www.daffodildb.com/crm/
8The applications can be obtained from http://www.gotocode.com/

11

Application Execution time (ns)
Database Original sdriver Overhead (%)
sql Server 175 183 4.7
Mysql 121 126 3.7

Table 2: Proxy driver baseline cost

Application Execution time (µs) Overhead (%)
Database Original Training Production Training Production
sql Server 605 1221 841 102 39
Mysql 401 1009 613 60 35

Table 3: The cost of sql query processing under sddriver

vulnerability. For instance, a user input parameter consisting of the string any\’
in the application “portal” would result in the execution of the following query:

SELECT e.date start AS e date start, e.event desc AS e event desc,
e.event name AS e event name, e.location AS e location,
e.presenter AS e presenter FROM events e WHERE
(e.event desc LIKE ’%any\”%’ OR e.event name LIKE ’%any\”%’ OR
e.presenter LIKE ’%any\”%’) ORDER BY e.date start DESC

The preceding statement would raise an exception revealing information
about the underlying database and its schema.

Given that our driver works as a wrapper around other connectivity drivers,
we could also instrument it to handle exceptions when running in production
mode. As a result, critical information like the above would not be revealed.
However, because well-written applications have their own sophisticated ex-
ception handling, we made secure exception handling an optional configurable
feature.

With its secure exception handling activated, our tool successfully prevented
all sqlias in this last test without suffering from false negatives. Furthermore,
we did not encounter false positives (legitimate queries misreported as an attack)
in any of the three experiment classes we performed.

5.2 Operation Cost

The acquisition cost of sdriver is minimal, because we are releasing it as open-
source software.9 Deploying sdriver is also relatively straightforward: the only
requirement is the ability to modify the database’s connection string. This can
be achieved by specifying an appropriate application-specific parameter (Java
property), by modifying the source code, or (in extreme cases) by patching
the application’s binary. Furthermore, one must then execute the application

9The software is available at istlab.dmst.aueb.gr/~dimitro/sdriver

12

in training mode. An automated test suite that will exercise (ideally all) the
application’s calls to methods containing sql strings with user-input data, would
make this exercise trivial. Otherwise appropriate scenarios must be devised and
executed each time a new version of the application is installed.

The driver’s architecture allowed us to test its performance on two rdbmss:
sql Server 2000 and Mysql (version 5.0.24). All tests were performed on a
Pentium 4 cpu clocked at 2.6 ghz on a machine with 512mb ram running
Java 1.6.0 under Windows xp Professional. We first measured the baseline
overhead of sdriver by executing a jdbc method—getAutoCommit()—that is
passed through directly to the underlying database driver without further pro-
cessing. The results, appearing in Table 2 indicate that the cost of interposing
sdriver is negligible.

Subsequently, we measured the overhead of the sqlia detection code by
executing the following moderately complex sql statement, with and without
sdriver.

SELECT d name, d SorL, d year,d genre, d cover FROM artists,
disks , recorded WHERE a name = ’”+ selectedartist +”’ AND
d name = rec d name AND rec a name = a name

The performance overhead for the two rdbmss was similar (see Table 3). In
training mode the queries take twice as long to execute. However, this cost is not
unreasonable, because this is an execution mode that will be rarely exercised.
In production mode, the operation cost is significantly lower: below 50% for
both rdbmss. Early versions of our tool, incurred a significant overhead (with a
range from 239% to 279% in both training and production mode). We optimized
away this overhead by streamlining the regular expressions used for stripping
the sql queries, and by caching the signatures into a static Hashtable when a
connection between the application and the sdriver is first set up in production
mode. We also considered limiting the depth of the stack frame processing
during production mode, by calculating in training mode a stack frame prefix
tree (trie) [19, 481–490], but the performance improvements were negligible.

6 Conclusions

sdriver is a mechanism and a prototype application that prevents sqlias against
web applications. If an sql injection happens, the structure of the query, and
therefore its signature will be altered, and sdriver will be able to detect it.
By associating a complete stack trace with the root of each query, sdriver can
correlate queries with their call sites. This increases the specificity of the stored
query signatures and avoids false negative results. The increased specificity of
the signatures also allows us to discard a large number of the query’s elements,
thereby also reducing false positive results. A disadvantage of our approach is
that when the application is altered, the new source code structure invalidates
existing query signatures. This necessitates a new training phase. However, with
the increased adoption of test-driven development [17], and use of automated

13

testing frameworks, like junit [3], this training phase can often become part of
the application’s testing.

The main contribution of our approach is the association of complete stack
traces with each query. Although we have implemented sdriver as a jdbc proxy,
the same approach could also be used for applications written in other languages,
like C and C++. Furthermore, the association of queries with their stack trace
can be used to minimize the extent of source code modification in other ap-
proaches, like amnesia [13, 12].

Future work on our system involves packaging it in a way that will allow its
straightforward deployment, and experimentation with different approaches for
handling the reported attacks.

References

[1] C. Anley. Advanced SQL Injection in SQL Server Applications. Next Gen-
eration Security Software Ltd., 2002.

[2] E. Barrantes, D. Ackley, S. Forrest, T. Palmer, D. Stefanovic, and D. Zovi.
Randomized instruction set emulation to disrupt binary code injection at-
tacks. In CCS 2003: Proceedings of the 10th ACM Conference on Computer
and Communications Security, pages 281–289, October 2003.

[3] Kent Beck and Erich Gamma. Test infected: Programmers love writing
tests. Java Report, 3(7):37–50, July 1998.

[4] S. Boyd and A. Keromytis. SQLrand: Preventing SQL injection attacks. In
M. Jakobsson, M. Yung, and J. Zhou, editors, Proceedings of the 2nd Ap-
plied Cryptography and Network Security (ACNS) Conference, pages 292–
304. Springer-Verlag, 2004. Lecture Notes in Computer Science Volume
3089.

[5] G. Buehrer, B.W. Weide, and P.A. Sivilotti. Using parse tree validation
to prevent SQL injection attacks. In Proceedings of the 5th international
Workshop on Software Engineering and Middleware, pages 106–113. ACM
Press, September 2005.

[6] CERT. CERT vulnerability note VU282403. Online http://www.kb.cert.
org/vuls/id/282403, 2002. Accessed, January 7th, 2007.

[7] W.R. Cook and S. Rai. Safe query objects: statically typed objects as
remotely executable queries. In ICSE 2005: 27th International Conference
on Software Engineering, pages 97–106, 2005.

[8] Dorothy Elizabeth Robling Denning. An intrusion detection model. IEEE
Transactions on Software Engineering, 13(2):222–232, February 1987.

14

[9] Carl Gould, Zhendong Su, and Premkumar Devanbu. Static checking of dy-
namically generated queries in database applications. In ICSE ’04: Proceed-
ings of the 26th International Conference on Software Engineering, pages
645–654, Washington, DC, USA, 2004. IEEE Computer Society.

[10] Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic taint propa-
gation for Java. In ACSAC ’05: Proceedings of the 21st Annual Computer
Security Applications Conference, pages 303–311, Washington, DC, USA,
2005. IEEE Computer Society.

[11] W. G. Halfond and A. Orso. AMNESIA: analysis and monitoring for neu-
tralizing SQL-injection attacks. In Proceedings of the 20th IEEE/ACM
international Conference on Automated Software Engineering, pages 174–
183. ACM Press, November 2005.

[12] W. G. Halfond and A. Orso. Preventing SQL injection attacks using AM-
NESIA. In ICSE 2006: Proceedings of the 28th International Conference
on Software Engineering, pages 795–798. ACM Press, May 2006.

[13] William G. J. Halfond and Alessandro Orso. Combining static analysis
and runtime monitoring to counter SQL-injection attacks. In WODA ’05:
Proceedings of the Third International Workshop on Dynamic Analysis,
pages 1–7, New York, NY, USA, 2005. ACM Press.

[14] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso. A classifica-
tion of SQL-injection attacks and countermeasures. In Proceedings of the
International Symposium on Secure Software Engineering, March 2006.

[15] Val Henson. An analysis of compare-by-hash. In Proceedings of HotOS
IX: The 9th Workshop on Hot Topics in Operating Systems, pages 13–18,
Berkeley, CA, May 2003. USENIX Association.

[16] Michael Howard and David LeBlanc. Writing Secure Code. Microsoft Press,
Redmond, WA, second edition, 2003.

[17] Ron Jeffries and Grigori Melnik. Guest editors’ introduction: TDD–the art
of fearless programming. IEEE Software, 24(3):24–30, May 2007.

[18] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection
attacks with instruction-set randomization. In CCS 2003: Proceedings of
the 10th ACM Conference on Computer and Communications Security,
pages 272–280. ACM Press, October 2003.

[19] Donald E. Knuth. The Art of Computer Programming, volume 3: Sorting
and Searching. Addison-Wesley, Reading, MA, 1973.

[20] Sin Yeung Lee, Wai Lup Low, and Pei Yuen Wong. Learning fingerprints
for a database intrusion detection system. In Dieter Gollmann, Günter Kar-
joth, and Michael Waidner, editors, ESORICS ’02: Proceedings of the 7th
European Symposium on Research in Computer Security, pages 264–280,

15

London, UK, 2002. Springer-Verlag. Lecture Notes In Computer Science
2502.

[21] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding applica-
tion errors and security flaws using PQL: a program query language. In
OOPSLA ’05: Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object Oriented Programming, Systems, Languages, and Applications,
pages 365–383, New York, NY, USA, 2005. ACM Press.

[22] Russell A. McClure and Ingolf H. Krüger. SQL DOM: Compile time check-
ing of dynamic SQL statements. In ICSE ’05: Proceedings of the 27th
International Conference on Software Engineering, pages 88–96, 2005.

[23] Dimitris Mitropoulos and Diomidis Spinellis. Countering SQL injection at-
tacks with a database driver. In Theodore S. Papatheodorou, Dimitris N.
Christodoulakis, and Nikitas N. Karanikolas, editors, Current Trends in
Informatics: 11th Panhellenic Conference on Informatics, PCI 2007, vol-
ume B, pages 105–115, Athens, May 2007. New Technologies Publications.

[24] K. Spett. Blind SQL injection. Online http://www.spidynamics.com/
whitepapers/Blind_SQLInjection.pdf, 2004. Accessed, January 7th,
2007.

[25] Zhendong Su and Gary Wassermann. The essence of command injec-
tion attacks in web applications. In Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
POPL ’06, pages 372–382. ACM Press, January 2006.

[26] Fredrik Valeur, Darren Mutz, and Giovanni Vigna. A learning-based ap-
proach to the detection of SQL attacks. In Klaus Julisch and Christopher
Kruegel, editors, Intrusion and Malware Detection and Vulnerability As-
sessment: Second International Conference, DIMVA 2005, pages 123–140,
July 2005. Lecture Notes in Computer Science 3548.

[27] John Viega and Gary McGraw. Building Secure Software: How to Avoid
Security Problems the Right Way. Addison-Wesley, Boston, MA, 2001.

[28] Gary Wassermann and Zhendong Su. An analysis framework for security in
web applications. In SAVCBS 2004: Proceedings of the FSE Workshop on
Specification and Verification of Component-Based Systems, pages 70–78,
2004.

[29] Gary Wassermann and Zhendong Su. Sound and precise analysis of web
applications for injection vulnerabilities. In PLDI ’07: Proceedings of the
2007 ACM SIGPLAN conference on Programming language design and im-
plementation, pages 32–41, New York, NY, USA, 2007. ACM Press.

[30] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policy enforce-
ment: A practical approach to defeat a wide range of attacks. In Security

16

’06: Proceedings of the 15th USENIX Security Symposium, pages 121–136,
Berkeley, CA, August 2006. USENIX Association.

[31] Yves Younan, Wouter Joosen, and Frank Piessens. A methodology for de-
signing countermeasures against current and future code injection attacks.
In IWIA 2005: Proceedings of the Third IEEE International Information
Assurance Workshop, College Park, Maryland, U.S.A., March 2005. IEEE,
IEEE Press.

Id: sqlia.tex,v 1.61 2008/10/13 13:32:18 dimitro Exp

17

