
Division of Effort, Productivity, Quality, and 
Relationships in FLOSS Virtual Teams:  

Evidence from the FreeBSD Project  
 
 

George M. Giaglis  
(Department of Management Science and Technology 
Athens University of Economics and Business, Greece 

giaglis@aueb.gr) 
 

Diomidis Spinellis  
(Department of Management Science and Technology 
Athens University of Economics and Business, Greece 

dds@aueb.gr) 
 
 
 

Abstract: Research in virtual teams and distributed work argues that the lack of collocation 
places an overhead on the performance potential of large, globally distributed teams. In this 
paper, we revisit this tenet through a case study of Free/Libre Open Source Software (FLOSS) 
development to demonstrate how globally dispersed FLOSS communities manage to overcome 
the problem of geographic separation of their members. Our results show that successful 
FLOSS teams demonstrate a truly global distribution of members, who perform different types 
of work so as to achieve consistent round-the-clock development, without any apparent ill 
effects on team productivity and the quality of the resulting outcomes. Cooperation between 
team members is abundant, especially at more complex work items, and does not seem to be 
affected by distance; only mentoring relationships appear in some cases to be easier to cultivate 
between individuals living closer together. These findings challenge the conventional wisdom 
of research in distributed work, in cases where virtual teams consist of highly skilled and 
motivated individuals, who leverage the power of communication technologies to overcome 
problems associated with physical distance.  
 
Keywords: FLOSS, open source development, virtual teams, distributed work, FreeBSD 
Categories: D.2.9, K.4.3, K.6.1, K.6.3 

1 Introduction  

Free/Libre Open Source Software (FLOSS) has arguably revolutionized the way in 
which software is being produced; the components and processes used for creating 
and distributing it [Spinellis and Szyperski 04], as well as the collaborative workflow 
between individuals within or across organizational boundaries for the purpose of 
software production, have seen a dramatic shift and are challenging the conventional 
wisdom of the IS community regarding what works and how in information systems 
development practices. For example, while IS literature has frequently stressed the 
difficulties associated with distributed software development and remote collaborative 
work [Herbsleb and Mockus, 03], the counter-examples of successful FLOSS 
development efforts are too numerous to ignore. The Mozilla web browser, the 
OpenOffice suite, as well as most components of a GNU/Linux distributions, are 

Journal of Universal Computer Science, vol. 18, no. 19 (2012), 2625-2645
submitted: 30/3/12, accepted: 6/9/12, appeared: 1/11/12 © J.UCS



well-known examples of successful systems, each containing millions of lines of 
code, that have been developed by loosely coordinated teams of software developers 
who are globally dispersed, without central control or authority, and with practices 
that differ from those advocated by traditional software engineering and information 
systems development approaches. 

In this paper, we set out to investigate how such globally distributed teams 
manage to overcome the obstacles associated with geographic distance, time-zone 
differences, cultural dissimilarity, and coordination overhead to produce software 
code efficiently and effectively. To do so, we adopt the theoretical viepoint of virtual 
teams and a case study approach to empirically investigate the historical evolution 
and current state of one of the largest FLOSS projects in progress: the development of 
the FreeBSD operating system. We chose the particular setting because of the 
richness and depth of information available to the researcher, as a result of the large 
number of developers working together from around the globe and the meticulous 
process of documenting the process and outcomes of their collaborative effort. These 
provide a rich setting for extracting systematic data regarding the process and 
outcomes of distributed collaboration in FLOSS development.  

The paper is structured as follows. In the following section, we visit some 
background research on FLOSS to establish gaps in this emerging literature and place 
our research in a wider context. Following that, we examine FLOSS communities as 
virtual teams and set out our hypotheses regarding the expected effects of distance on 
(a) division of effort, (b) work productivity and quality, and (c) interpersonal 
relationships within FLOSS communities. Next, we discuss our case setting by 
outlining the development model, work practices and tools used by the developers 
that make up the FreeBSD community. We then explain our method of data collection 
and the results obtained, before revisiting our theoretical propositions to discuss our 
findings and conclude with insights for further research. 

2 Background Research on FLOSS 

FLOSS has been the subject of intense interdisciplinary research for more than a 
decade; Karolak [Karolak, 98]  and Carmel [Carmel, 99] wrote the first monographs 
on the subject, while IEEE Software devoted the first journal special issue on open 
source a couple of years later [Herbsleb and Moitra, 01]. Software engineering 
researchers were naturally the first to study the new phenomenon, but research from 
other fields, most notably information systems, quick caught up to reflect the 
inherently interdisciplinary nature of the new field [von Krogh and Spaeth, 07; von 
Krogh and von Hippel, 06]. Early research focused, expectedly, on studying the 
process of organizing remote collaboration teams of software developers with a view 
to addressing early questions, such as the management of virtual teams [Karolak, 98], 
technical, organizational, and social work challenges [Lanubile et al., 03], and the 
emergence of a organic research community around the new phenomenon 
[Hargreaves et al., 04]. Early researchers were also quick to identify various 
challenges associated with splitting software development work among various sites 
[Carmel, 97] and proposed the adoption and use of direct communication channels 
between developers as a way to alleviate potential problems [Herbsleb and Grinter, 
99].  The majority of such early assertions were mostly anecdotal in nature, reflecting 

2626 Giaglis G.M., Spinellis D.: Division of Effort ...



the personal experiences of their authors. More systematic research on the challenges 
faced by FLOSS teams started to emerge when researchers started using data from 
free and open source software [Elliott and Scacchi, 03; Sandusky and Gasser, 05], as 
well as commercial projects [Akmanligil and Palvia, 04; Herbsleb et al., 05], to 
examine various issues associated with global software development, most notably 
factors that affect the success of FLOSS projects [Subramaniam et al., 09; Hahn et al., 
08; Stewart et al., 06]. 

Another strand of research has focused on comparing FLOSS development with 
traditional software engineering methods. For example, Mockus et al. [Mockus et al., 
02] and Reis and Fortes [Reis and Fortes, 02] have examined the processes followed 
within groups developing the Apache Web Server and the Mozilla web browser, 
identifying differences in developers’ roles, tools used, and activities performed. 
Scacchi [Scacchi, 02] summarized the differences between these practices and the 
theoretical tools prescribed in traditional software engineering texts. 

Another set of questions that has attracted researchers’ attention relates to the 
motivation of individuals to participate in FLOSS, often without pay or any other 
material benefit, for long periods of time [Subramanyam and Xia, 08]. Amongst the 
findings of this stream of study, we can highlight the intrinsic motivation of 
enjoyment [Hertel et al., 03], the altruistic benefits of sharing and learning, either at 
the individual or the organizational level [Ye and Kishida, 03; Huntley, 03], and the 
more material benefits of recognition, skill development and better employment 
prospects [Lerner and Tirole, 2002]. 

While these studies have shed light into various dimensions of FLOSS, our 
knowledge regarding the actual effects of the global dispersion of group members on 
the performance of FLOSS teams and the relationships formed within the community, 
remains sketchy and anecdotal. Literature has identified factors that could affect these 
variables in positive ways, such as round-the-clock development [Jalote and Jain, 04], 
in negative ways, such as lack of face-to-face [Herbsleb and Grinter, 99], and in ways 
that are indeterminate, such as cultural diversity [MacGregor et al.,  05]. 

Such inconclusive results are perhaps not surprising, given the early stage and 
exploratory character of such research. However, FLOSS is today mature enough to 
allow us to delve into these questions more closely. It is interesting to note that 
research addressing the effects of geographic distance on measures of FLOSS team 
performance is almost completely missing from existing IS literature. We are aware 
of only the study of Subramanyam and Xia (2008), who studied drivers of motivation 
to join a FLOSS community across geographic boundaries – even in this case 
however, the study was confined to North America, China, and India, and addressed 
only motivational factors, without looking into the effects of geography on team 
performance. 

Our work builds on previous research and a case study approach to provide 
additional quantitative data points for the study of global software development and 
the effects of geographic dispersion (distance) between developers on four measures 
of FLOSS outcomes: the division of effort in FLOSS production, the productivity of 
work performed, the quality of the outcomes produced, and the relationships between 
team members. In the following section, we theorize on these questions to develop the 
propositions that are then tested through an inductive case study. 

2627Giaglis G.M., Spinellis D.: Division of Effort ...



3 FLOSS communities as virtual teams 

We adopt a social perspective in order to understand how the effectiveness of FLOSS 
communities is being affected by the lack of collocation between their members. 
More specifically, we follow the theoretical streams of virtual teams and distributed 
work, where issues related to how temporal, spatial, and cultural separation may 
affect the outcomes of a globally dispersed group of people have been studied in the 
past. 

According to Lipnack and Stamps [Lipnack and Stamps, 00], a virtual team is “a 
group of people who work independently with a shared purpose across space, time, 
and organizational boundaries using technology”. Thus, the two most prevalent 
distinguishing characteristics of a virtual team are a lack of collocation and 
technology-mediated interaction between its members. Virtual teams are frequently 
used in organizations for a variety of reasons, including the benefits of using the best 
talent regardless of location and the increased availability of sophisticated technology 
to support distributed work [Espinosa et al., 03; Paul, 06].  

FLOSS development is being performed by groups of people that can be thought 
of as members of virtual teams, albeit with certain unique characteristics, for example 
the absence of a solid (non-virtual) background organization, the lack of a predefined 
and agreed upon set of tasks, and the existence of an open culture where members are 
free to join or abandon the team at any time. Such characteristics render FLOSS 
communities more complex than typical intra-organizational virtual teams and call for 
additional research that will address these specificities. Indeed, researchers have long 
claimed that the FLOSS movement does not readily lend itself to predictions and 
explanations of existing theorizations, thus creating a theoretical tension [von Krogh 
and Spaeth, 07]. Aiming to alleviate this tension, in what follows, we discuss how the 
lack of collocation between members of FLOSS communities, coupled with the 
distinguishing characteristics of these virtual teams, are expected to influence 
measures of team performance (division of effort, productivity, quality, and 
interpersonal relationships). 

3.1 Distance in FLOSS 

Virtual team interactions are by definition geographically unrestricted [Johnson et al., 
02]. Traditional research in globally distributed teams has shown that such teams have 
problems maintaining mutual knowledge, which is important for team success 
[Cramton, 01] – that is why, Olson and Olson [Olson and Olson, 00], after reviewing 
research on distance collaboration, concluded that ‘distance matters’. If distance is an 
issue in small intra-organizational virtual teams, it is naturally more so as the size of 
the team and the distance between its members grow. Successful FLOSS teams may 
consist of hundreds of software developers that reside across five continents and 
collaborate in the absence of a central authority or a formal management structure. It 
is therefore important to study how distance may affect the performance, productivity, 
and interpersonal relationships in FLOSS teams. 

On the other hand, it is known that communication technologies can alleviate at 
least some of the problems associated with distance collaboration [Kiesler and 
Cummings, 02]. Studying technology-mediated distributed teams, Fuller et al. [Fuller 
et al., 07] found that group potency and computer collective efficacy are significant 

2628 Giaglis G.M., Spinellis D.: Division of Effort ...



predictors of the efficacy of a virtual team, which is itself predictive of perceptual and 
objective measures of performance. Similarly, Montoya-Weiss et al. [Montoya-Weiss 
et al., 01] have shown that temporal coordination, usually facilitated by the advanced 
use of communication and coordination technologies, can have a positive effect on 
virtual team performance, while Sarker and Sahay [Sarker and Sahay, 03] have 
described how communication facilitates the development of the whole virtual team. 
Hence, the more group efficacy a team demonstrates with communication tools, the 
less problems it is expected to face in coordinating the remote work of its members.  

Previous theorizations have drawn upon observations of various types of 
organizational virtual teams, which exhibit varying degrees of familiarity with and 
ability to exploit communication and collaboration technologies to their full potential. 
Conversely, FLOSS teams, being collectives of expert software developers, are 
naturally expected to be able to make the most of such tools, thus weakening the 
effect of distance on group performance. Hence, we expect that the geographic 
distance between members of a FLOSS team will not have a significant effect in 
measures of team performance. We will explore the hypo-theses of this statement in 
the following sections.  

3.2 Division of Effort in FLOSS 

Arguably, the most fundamental question facing FLOSS researchers is how global 
development works in practice. We know that it is global teams of developers that 
cooperate to develop FLOSS, but no research to date has empirically studied the 
actual distribution of effort across different parts of the world; in other words, 
whether developers residing in different places contribute different amounts of work 
or place different emphasis in their contributions to the overall project. 

The only other research we are aware of regarding differences exhibited between 
members of FLOSS teams across regions is by Subramanyam and Xia  
[Subramanyam and Xia, 08], who studied North American, Chinese, and Indian 
developers and found significant differences in their motivations to join a FLOSS 
team. However, research has yet to look into how developers from different regions 
differ in the amount and type of work they actually perform after they have joined a 
FLOSS team. Although geographic distance is not expected to be a significant 
determinant of division of effort in itself, it is known that other factors, for example 
cultural differences [Hofstede, 01], will affect the behavior of people across world 
regions. We therefore expect to find some differences in work patterns between 
regions, but it is beyond the scope of this research to make predictions about what 
actually drives such hypothesized differences. Instead, our aim is to provide empirical 
evidence, which will, if realized, will point, along with the findings of Subramanyam 
and Xia [Subramanyam and Xia, 08], to a need for further research into how cultural 
factors affect the division of effort within FLOSS teams. 

3.3 Productivity of FLOSS teams and Quality of Outcomes 

Research in understanding the factors that affect virtual team performance is 
increasingly important [Hinds and Kiesler, 02]. Information systems research has 
examined a variety of virtual team performance measures, including decision 
effectiveness [Schmidt et al., 01], leadership effectiveness [Kayworth and Leidner, 

2629Giaglis G.M., Spinellis D.: Division of Effort ...



02], and group efficacy [Fuller et al., 07]. Other researchers have looked into how 
group characteristics, such as trust and communication [Jarvernpaa et al., 04; Sarker 
and Sahay, 03), can influence group outcomes, while yet others have focused their 
attention to structural factors, such as temporal constraints [Massey et al., 03] and 
subgroup politics [Panteli and Davison, 05], and their effects on virtual teams. 

In the context of FLOSS, Stewart and Gosain [Stewart and Gosain, 06] have 
shown how a shared ideology between team members tends to motivate behaviors 
that enhance cognitive trust and communication quality, which in turn impact the 
effectiveness of the team positively. The authors point to a few norms and many 
shared beliefs and values as the binding glue that motivates FLOSS teams and drives 
their effectiveness. As also pointed out above, we can expect the computer collective 
efficacy of FLOSS teams to be another important driver of performance [Fuller et al., 
07; Montoya-Weiss et al., 01]. 

We can identify two main measures of performance: 
(a) Productivity. Globally dispersed virtual teams are able to coordinate and 

synchronize their activities to enable their project to benefit from 24/7 (round-
the-clock) development. Moreover, productivity is measured by development 
activity, which is a natural measure of success of a FLOSS community [Stewart 
et al., 06], as FLOSS projects that fail to generate the necessary amount of 
activity gradually become abandoned [Hahn et al., 08]. 

(b) Quality. While additional activity is arguably a good proxy of team 
performance, the quality of this activity is also of paramount importance and 
needs to be studied if a holistic picture of team performance is to be captured. 
Quality of code is determined by many elements [Spinellis, 06a] and measuring 
it is far from trivial [Stamelos et al., 02; Payne, 02]. The main measures used are 
adherence to code style guidelines and problem reports or bugs found in the 
code. 

Previous research has already hinted that the productivity and quality of 
distributed software development may not be significantly hindered by the lack of 
collocation of their members, contrary to the predictions of conventional virtual team 
theory. For example, in the area of distributed code development (but not in FLOSS), 
Bird et al. [Bird et al., 09] compared the post-release failures of Windows Vista 
components that were developed in a distributed fashion against those that were 
developed by collocated teams and found non-significant differences. This is in line 
with our thesis that distance will not play an important role in the productivity/quality 
of FLOSS outcomes. Hence, we expect that the geographic distance between 
members of a FLOSS team will not have a significant effect on team productivity or 
the quality of the outcomes produced. 

3.4 Relationships between FLOSS community members 

FLOSS communities are, as all virtual teams, social structures with distinctive 
properties of organization and emergent relationship building patterns among their 
members. Research has studied how such self-sustained social networks surface and 
self-organize out of an initial grassroots, uncoordinated, gathering of individuals. For 
example, researchers have looked into the processes by which developers find others 
with shared competencies, values, and beliefs [Crowston and Scozzi, 02; Espinosa et 
al., 02), how small teams merge into larger ones to reach a self-sustaining critical 

2630 Giaglis G.M., Spinellis D.: Division of Effort ...



mass and the role played by ‘linchpin developers’ in this process [Madey et al., 04], 
and how such communities become institutionalized [Sharma et al., 02], thus 
ultimately transforming the open source software production phenomenon itself 
[Fitzgerald, 06]. 

Conventional virtual team research predicts that the formation of interpersonal 
relationships will be somewhat hindered by the geographic distance between team 
members. However, in the case of FLOSS, developers have been shown to use other 
resources (for example, prior collaboration ties – see Hahn et al., 08) to compensate 
for the lack of physical collocation. Such practices allow members of FLOSS teams to 
form different types of interpersonal relationships, either peer-to-peer (i.e. 
horizontally, between developers with the same status within the community) or 
hierarchical (i.e. vertically, between expert and novice members of the community) 
[Spinellis, 06b]. Sociological research has already shown that computer-mediated 
communication channels are also being used to sustain such ties between individuals 
engaged in remote cooperative work, thus helping them de-emphasize local 
organizations and the effects of distance on relationships [Wellman et al., 96]. We 
therefore contend that the geographic distance between members of a FLOSS team 
will not have a significant effect on the establishment of interpersonal relationships 
between team members.  

4 FLOSS communities as virtual teams 

FreeBSD [McKusick and Neville-Neil, 04] is a sophisticated operating system 
available for a number of modern computer architectures. It is a complete operating 
system (rather than just a kernel, like Linux) derived from BSD Unix, the branch of 
Unix developed at the University of California, Berkeley. FreeBSD, known for its 
stability and reliability, runs the servers of large portals, like Yahoo!, hosting 
providers, like the Host Department, and embedded applications, like Juniper’s 
routers. Parts of it also form the basis for Apple's Mac OS X. 

FreeBSD is the result of open-source software development and maintenance 
effort performed by more than 600 individuals located throughout the world. The 
global development effort is coordinated through a number of facilities [Feller and 
Fitzgerald, 01; Saers, 03]: 
 A configuration management system repository, based on Subversion and CVS, 

houses the current version of all the source code and documentation files, 
maintenance branches of older versions, and more than 15 years of historical 
data. The complete repository is available for public download and for browsing 
through a web-based interface. 

 A problem reports database contains descriptions of open and closed issues, the 
individuals dealing with them, and details of the resolution history. 

 More than 100 open and closed mailing lists provide a broadcast mechanism for 
developers and end-users. The lists cover various development areas (such as 
security or testing), hardware and processor architectures, and releases of the 
system. 

2631Giaglis G.M., Spinellis D.: Division of Effort ...



 A so-called tinderbox system continuously performs complete builds of the 
current source code, providing an early indication of any problems committed to 
the source repository. 

 A public web site contains the Developer's Handbook, up-to-date release 
engineering information, a browsable interface to the version control repository, 
mailing list archives, and a read-only interface to the problem reports database. 

 A network of machines, accessible to all FreeBSD developers over the internet, 
provides developers with a common workspace for compiling and testing their 
code on different machine architectures. 

Developers are mostly unpaid volunteers, although companies with vested 
interests in the system also have developers contribute as part of their job. An elected 
core team is responsible for deciding the project's overall goals and direction, 
approving proposals for new developers to join the project, and resolving differences. 
Separate teams handle release engineering, third-party ports, donations, and security. 
Developers have the right to modify any part of the system (a so-called commit 
privilege), subject to a few formal and many informal restrictions. For example, 
developers are not allowed to commit changes while a code freeze is in place without 
prior approval from the release engineering team. Also, heavy modifications on code 
actively maintained by another developer or changes directly undoing another 
developer's work are frowned upon. 

Developers typically start as enthusiastic contributors of project code; at some 
point another developer will take interest in their work and recommend them for 
granting commit privileges. New developers are initially assigned a mentor who 
oversees their work, and approves the changes they make to the code.  

We have chosen the particular case setting, as it fits with our objective of drawing 
upon a theoretical understanding of FLOSS communities as virtual teams and 
exploring the case-derived empirical data through a theoretically informed lens to 
provide answers and insights on the questions raised in the previous section. 

5 Data Collection, Analysis, and Results 

5.1 Method 

We derived the version control data from a snapshot of the CVS repository taken on 
September 14th, 2009, and examined through the CVS client front-end in conjunction 
with a number of Unix tools we developed and run. Although the development of the 
FreeBSD source code has moved to use the Subversion system, all changes are 
mirrored to the CVS repository for the sake of performance and backward 
compatibility.  At the time of analysis, the repository covered about 25 million lines 
of code and documentation, and contained 1,405,278 commit messages from 594 
different committers, made in a period of about 15 years.  

We also examined the problem reports database by directly scanning the system 
files on the project's shell login server, in October 2009. At that time the repository 
contained around 139,000 reports.  

Both CVS commit messages and problem reports are tagged with the login name 
of the corresponding developer. By establishing a relationship between developers 
and their locations throughout the globe one should be able to derive a number of 

2632 Giaglis G.M., Spinellis D.: Division of Effort ...



interesting results. To this end, we used a file distributed together with the 
FreeBSD port of the XEarth application, which contains the latitude, longitude, login 
name, and location name of many FreeBSD developers. Through two appeals to the 
developer community, in 2005 [Spinellis, 06b] and 2009, and a wholehearted 
response, we were able to increase the coverage of the commit lines that could be 
attributed to a specific global location from 71% on November 17th, 2005 to 83% on 
September 28th, 2009. We thus secured location data for 394 developers (out of the 
total 594 ones, a representation of 66.3%). We made no attempt to take into account 
developers who moved place during the time covered by the CVS data. 

5.2 Division of Effort in FreeBSD 

The project's 394 developers for which we obtained location data live in 362 different 
locations in 46 countries throughout the world; the lines of code contributed by each 
location are depicted as vertical bars on the map in Figure 1. As we can see in the 
figure, most developers reside in North America and Europe, with pockets appearing 
in Asia, Australia, South Africa and South America.  

Figure 1: FreeBSD Development effort throughout the world (LOC=Lines of code) 

Table 1 illustrates the main countries of residence of FreeBSD developers. USA 
tops the list, but accounts for only 30% of the global developers’ population (44% of 
the core team membership). The top seven countries make up 62.5% of the 
population, while the remaining 37.5% is shared by 39 other countries, thus reflecting 
the truly global scope of the project. The table also illustrates how past and present 
members of the core team are distributed around the world: they have a dispersion 
similar to that of the project’s other developers.  Although the percentage of core team 
members residing in the US is higher than that of developers, the the core team’s US 
developers reside in eight different states (CA, CO, GA, IA, MA, NY, OR, WA). 

 

2633Giaglis G.M., Spinellis D.: Division of Effort ...



 

Country Number of Developers (%) Core Team Members (%) 

USA 118 (30%) 11 (44%) 

Germany 38 (10%) 1 (4%) 

Japan 26 (6.5%) 1 (4%) 

UK 17 (4%) 2 (8%) 

Canada 16 (4%) 1 (4%) 

Russia 16 (4%) – 

France 15 (4%) – 

39 other countries 148 (37.5%) 9 (36%) 

TOTAL 394 (100%) 25 (100%) 

Table 1: Countries of FreeBSD Developers’ Residence 

We can observe two interesting facts in the division of effort across regions. First, 
the work performed by Asian developers is by an overwhelming proportion (78%) 
related to the porting and packaging of existing applications. One could attribute this 
difference to cultural factors, but we don't believe that this work has sufficient data to 
make such claims. This finding is, however, a strong pointer to the need for further 
research in this area. 

The second interesting aspect concerns differences between maintenance and 
development work. New development in the FreeBSD occurs in the current, active 
development branch of the configuration management system. Developers are also 
encouraged to back-port, where possible, enhancements and error corrections to the 
stable branches of the older maintained versions following a procedure known as 
merge from current (MFC). Contributions to the stable branches are more likely to 
represent maintenance work. Surprisingly, the distribution between the two work 
types across regions is not the same. Whereas North American work is roughly 
balanced between contributions to the active and the stable branches (57% versus 
43%), the distribution in Europe favors the active branch with about 69% of the lines 
committed to it. These differences can perhaps be attributed to the fact that there are 
more FreeBSD-based production systems, such as Yahoo! and Apple’s Mac OS X, in 
North America than in the other regions, where more developers use FreeBSD on 
their personal workstations. Production systems tend to be based on stable versions, 
and we can therefore expect North American developers to have an active interest in 
maintaining them.  

The picture is also complicated by the different distribution appearing in the 
developers who resolve entries in the FreeBSD issue database. Here, Europe, with 
45% of the resolved issues, leads North America, which accounts for 30% of the 
resolved issues, while Asia and Australia trail with 14% and 6%, respectively. 
Apparently, working through entries of the issues database is a task orthogonal to the 
one of maintaining the stable versions. 

2634 Giaglis G.M., Spinellis D.: Division of Effort ...



FreeBSD developers are mostly unpaid volunteers, although some have at times 
been sponsored by various organizations, like Google, DARPA, NLnet, Apple, Isilon 
Systems, RideCharge, Nokia, and Juniper Networks.  However, only a small part of 
FreeBSD development is visibly sponsored: 0.9% of the commit messages and 2.3% 
of the corresponding added lines contain a “Sponsored by” acknowledgment. 
Interestingly, sponsored work (which also includes initiatives like the “Google 
Summer of Code”) trickles down to many developers: 17% of the project's 
committers have at least one sponsored commit. 

All in all, we can say that the FreeBSD project demonstrates a global taskforce of 
individuals working together from across the world, along with marked differences in 
the degree of contribution and the types of activity performed across regions. 

5.3 Productivity and Quality in FreeBSD 

5.3.1 Productivity 

As argued earlier, we use two measures of productivity: round-the-clock development 
and development activity.  

Figure 2 illustrates that the goal of increased productivity through round-the-
clock development is indeed realized in FreeBSD. For the past 15 years, 
FreeBSD developers committed on average 268 lines on every hour of each day; this 
number fluctuated between a minimum of 164 lines (at 04:00 UTC) and a maximum 
of 366 lines (at 23:00 UTC), while the distribution of work across time zones does not 
adhere to a normal distribution typically expected in a non-global setting. 

A question related to round-the-clock development is the granularity of the work 
items processed. Is work on a given file passed from one location to the next, are far-
away developers cooperating on large modules, or are the development 
responsibilities divided into different areas? Answering this question allows us to 
establish a method of round-the-clock development that has worked in practice. To 
tackle this problem, we observed the commit logs at the level of (a) individual files, 
(b) complete modules, and (c) the whole system, through various sliding windows 
covering 8-hour and daily intervals. By looking at commit messages in a given 
window, we counted the number of days in which commits occurred, the number of 
days with 8-hour-far commits by the same committers, the number of days with next-
day commits, and the number of days with 8-hour-far commits by different 
committers. These numbers allow us to see both normal work patterns and patterns 
likely to be associated with round-the-clock development:  
 At the level of files, round-the-clock development does not appear to be very 

prevalent. Only in 0.9% of the days was a commit followed after 8 hours by a 
commit from a different developer; conversely, work periods of the same 
developer spanning more than 8 hours occur in 1.5% of the days changes are 
committed into a file. Apparently (and quite reasonably) developers prefer to 
stretch a long period of work than hand out the work to be completed by 
somebody else.  

 When we turn our attention to modules, the situation is reversed: 5% of a 
module's work days contain commits spanning more than 8 hours by the same 
developer, while a whole 12.4% of the work days contain commits by different 

2635Giaglis G.M., Spinellis D.: Division of Effort ...



developers. Here, it looks like developers from different parts of the world 
cooperate together on the same module, working across different timezones.  

 Not surprisingly, the same story appears at the system level, where in 97% of the 
days commits by different developers will span 8-hour periods, while in only 
47% of the project's work days will a developer work for more than 8 hours.  

 
Figure 2: Round-the-clock development 

Summarizing, we can claim that in smaller work items, developers tend to work 
in isolation. However, as the complexity of the work item increases, so does the 
amount of collaboration between developers from different locations. 

As far as development activity (our second measure of productivity) is concerned, 
we examined whether the geographic distance between developers working on a 
module affects the number of lines that are committed in it. For various modules of 
the FreeBSD system, we measured the average number of lines committed over a 
rolling one-month interval, the length of time development went on for a given 
module, the number of commits performed, the number of different committers, and 
the average geographic distance between the committers. From the 1,323 modules we 
examined, we removed modules being developed outside the FreeBSD project 
(contributed by other groups), and modules with less of 1,000 lines committed over 
their entire development history. That left us with 504 modules.  

As a base case, we examined the correlation between the average number of lines 
committed per month and the percentage of commits made by different committers. 
Intuitively one might expect – Brooks's [Brooks, 75] law notwithstanding – that more 

 0

 50

 100

 150

 200

 250

 300

 350

 0  4  8  12  16  20

A
ve

ra
g
e
 L

O
C

 p
e
r 

d
a
y

Time (UTC)

2636 Giaglis G.M., Spinellis D.: Division of Effort ...



people working on a given module would contribute more code. Indeed, we found a 
positive correlation between those two measures: a Pearson's product-moment 
correlation of 0.73 in a 95% confidence interval between 0.68 and 0.77. This base 
case establishes that committers can indeed be used as a proxy for measuring the 
productivity's input. 

Next, we examined the correlation between the average number of lines 
committed per month and the average geographic distance of the developers 
committing them. Given that the base case established a correlation between 
committers and the number of lines committed, we would expect that any relationship 
between the distance of those committers and the work produced would show up as a 
correlation in this case as well. However, a two-sided Pearson's product-moment 
correlation test on those two measures came up only with an extremely low 
correlation of -0.2 in a 95% confidence interval between -0.28 and -0.11. We can 
therefore conclude that, in our case, the geographic distance between developers does 
not significantly affect productivity.  

5.3.2 Quality 

We examined how a large number of geographically dispersed developers might 
affect the quality of the code produced. If the software's quality deteriorates when 
software is globally developed, managers should appreciate this problem, and 
establish procedures for dealing with it. For the purpose of this study, we chose two 
metrics of quality: 
 Adherence to the FreeBSD code style guidelines [FreeBSD, 06], as a proxy for 

the overall code quality.  
 Measurements of the problem reports filed for files committed by globally 

dispersed developers, as a direct measure of code defects.  
As far as adherence to the FreeBSD code style guidelines is concerned, we chose 

this metric because we could easily measure style adherence by formatting each 
source code file with the indent program configured according to the FreeBSD style 
guide, and calculate the percentage of lines that indent would change (the size of a 
minimal set of differences between the actual file and the formatted one). 
Furthermore, by having CVS generate a listing of the source code file with every line 
annotated with the name of the author who last modified it, we could count the 
number of developers who had worked on the file. 

Armed with these measurements, we used Pearson's product-moment method to 
examine possible correlations. The correlation coefficient for the 11,040 pairs of 
measurements was a miserly 0.11 in a 95% confidence interval between 0.10 and 
0.13. We therefore see that, in our case, the involvement of geographically dispersed 
programmers in the development of code does not affect the quality of the code 
produced.  

Finally, we examined whether the global development of a file by various 
developers was associated with an increased number of problem reports filed for it. 
Such a correlation could indicate that global development in the FreeBSD project 
leads to an increased number of bugs in the code, due, for example, to communication 
or coordination problems between the various developers. Although problem reports 
are kept in a database different from that of the FreeBSD configuration management 
system, rectified problems are typically marked in a versions control commit message 

2637Giaglis G.M., Spinellis D.: Division of Effort ...



by a reference to the corresponding problem report (PR). Because serious problem 
reports are by definition sooner or later rectified, we could establish a measure of the 
density of problem reports in a file by dividing the number of commit messages 
tagged with a PR number with the total number of the file's commits. We could then 
examine the correlation of that ratio with the number of different developers that had 
committed code to the corresponding file. 

We collected data for 41,532 source code files, 630,909 commit messages, and 
16,778 PRs. On average, each file was associated with 15.2 commits, 0.40 PRs, and 
4.5 different developers. A two sided Pearson's product-moment correlation test 
between the PR density and the number of committers gave a very small positive 
correlation between the two values (0.18) in a 95% confidence interval between 0.17 
and 0.19. Therefore, data from the FreeBSD project does not support the hypothesis 
that global software development is associated with a higher bug density in the code 
produced.  

5.4 Relationships in FreeBSD 

We used data from the FreeBSD project to examine how the distance between 
developers affects the network of their relationships. We focused on two types of 
associations between developers: cooperation toward a common goal, and learning in 
a mentor-mentee relationship. For both types of association, we measured the 
geographic distance between related developers and compared it to the average 
distance between developers in the whole community, which we found to be 
6,719km1. A markedly lower distance between cooperating developers and the 
average could mean that developers prefer to cooperate with those nearby. From such 
a result, one could theorize that geographic distance puts a strain in those associations.  

We obtained a list of cooperating developers by scanning the commit logs with a 
rolling window of a single day, looking for different developers who had committed 
code on the same file within that day. We assumed that such instances would indicate 
cooperation between those developers, because of the changes' proximity in the code 
space and time. From the data, we established 12,669 instances of cooperation 
between developers, and from those instances we kept the 9,606 for which we had at 
hand the geographic coordinates of both developers. The average distance between 
cooperating developers is 6,562km, a number very close to the average distance 
between any two developers. This fact indicates that, in the FreeBSD project, 
technical developer cooperation is not influenced by the distance between the 
developers.  

During the time new FreeBSD developers work with a mentor (typically about a 
year), they tag all their commit messages with a line indicating the name of the 

                                                           
1  To calculate distances between developers, we used the spherical law of cosines 

formula, which gives the distance d between two points with latitude δ and longitude λ on a 
sphere with radius R as,  

 
 d = R cos-1 [sinδ1 sinδ2 + cosδ1 cosδ2 cos(λ2-λ1)] 
 
 The formula does not take into account the Earth's ellipsoidal shape, but is accurate 
enough for the purposes of this work. 

2638 Giaglis G.M., Spinellis D.: Division of Effort ...



mentor who reviewed and approved the corresponding change. By reviewing those 
messages and, also, by using three files where committers are supposed to record their 
mentor, we established a list of 466 mentor-mentee pairs. From those, we kept the 315 
for which we had the locations for both members of the couple, and used the 
developer coordinates to calculate the distance between the mentor and the mentee 
(part of the resulting graph is shown in Figure 3). 

 

 

Figure 3: Distances (in km) in a part of the FreeBSD mentor-mentee graph. 

As shown in Table 3, which summarizes the km distances between any two 
developers and developers in a mentor-mentee relationship, the mean and median 
distances between mentors and mentees are lower than the average, and these 
differences are statistically significant. However, even in the mentoring case, absolute 
distances remain relatively high: even the numbers in the first quartile designate 
distances within a small country or state, not within a city.  

 
 Min ¼ Median Mean ¾ Max 

All Relationships 0 2,256 7,762 6,719 9,393 19,760 

Mentor-Mentee 
Relationship 

0 774 3,401 4,810 8,492 18,650 

Difference N/A 65,7% 56,2% 28,4% 9,6% 5,6% 

Table 3: Developer and Mentor-Mentee Distances (in km) 

It therefore seems that some mentor-mentee relationships are established between 
people in the same area (we found 20 pairs living up to 20km apart), but such 

2639Giaglis G.M., Spinellis D.: Division of Effort ...



relationships can (and do) also work across continents. In other words, mentoring 
relationships are somewhat influenced by the distance between participants. 

6 Discussion and Conclusions 

The findings in the previous sections indicate that FLOSS software development by a 
widely dispersed, loosely-coupled team of developers is a practical proposition. The 
FreeBSD community demonstrates a truly global distribution of members, with 
different types of work being performed across regions, consistent round-the-clock 
development, and no apparent ill effects on team productivity and the quality of the 
resulting code. Ad-hoc cooperation on specific work items is abundant, especially at 
more complex work items, and does not seem to be affected by distance; however, 
mentoring relationships appear in some cases to be easier to cultivate between 
individuals living closer together. 

Some of our findings may be counterintuitive and even contradict those of earlier 
studies that found diminished productivity among distributed teams (for example, 
Herbsleb and Mockus, 03). As argued in the beginning of the paper, our results reflect 
the distinctive properties of FLOSS communities, which differentiate them from other 
forms of virtual teams that have been the basis of earlier theoretical predictions. 
FLOSS projects are built mainly by volunteers vetted by their peers, hence a number 
of factors differ from what one would expect to find in an average organizational 
virtual team: all developers are extremely motivated and highly competent, they 
freely choose the type and amount of work they will undertake and when they will 
deliver it, and they are typically also users of the system they help to produce. These 
factors should be further examined in the context of the relationship between open 
and closed source software development [Spinellis and Szyperski, 04; Paulson et al., 
04].  

Our work has demonstrated that, when we examine problems of global software 
development, there's more to distance than geographic separation. Distance can 
appear in a number of different orthogonal dimensions. Physical distance should be 
looked in tandem with cultural distance, which may be taken to reflect differences in 
language, social norms and conventions, and predominant work ethic. Timezone 
distance can also crop up in remarkably different ways: developers can share a 
timezone but be far apart, because they live on different latitudes or because they 
work on different shifts. Finally, developers' access to various collaboration 
technologies, such as a configuration management system, an issue database, the 
phone, instant messaging, wikis, and mailing lists, is another underappreciated 
measure of distance. Such tools become even more important in the case of complex 
work items, where apparently the need for collaboration is higher (our results showed 
that developers seem to prefer to work on their own on simpler tasks, where the 
overhead of online communication is perceived to be higher than the benefit 
expected). All in all, the findings of this work highlight both the limited explanatory 
power of existing virtual team theorizations to cater for the FLOSS phenomenon and 
avenues for extending virtual team and distributed work research to address newly 
emerging forms of global collaboration, like FLOSS. 

The extent to which FLOSS productivity differs from what can be expected in 
intra-organizational software development, either global or collocated, is another 

2640 Giaglis G.M., Spinellis D.: Division of Effort ...



opportunity for future research. The lack of control groups where developers would 
work in the same office complex or across the world but under the control and 
authority of some established organization, does not allow us to make comparisons 
and verify the extent to which FreeBSD, or FLOSS in general, performance differs 
from what can be expected in such settings. However, to the extent that many existing 
commercial software development efforts are also dispersed among physically 
separated offices or sites, this work has demonstrated that in an environment where 
developers routinely use a number of essential collaboration technologies, geographic 
distance can become immaterial – the only exception being mentoring relationships, 
where communication technologies cannot apparently substitute the benefits of face-
to-face communication. Finally, our results indicate that managers should carefully 
plan the distribution of effort between different areas of the world to address different 
preferences and skills of developers between regions. 

Thus, the results described in the previous sections are relevant to practitioners, 
and they also open new research questions. Given the generally positive results of this 
study, commercial software development projects could, at the very least, try to adopt 
and emulate some of the global development practices of the FreeBSD project. On the 
research front one could also apply the research methodology of this study to 
commercial software development projects and see whether the same findings can be 
replicated there.  

The results and insight presented herein can by no means be taken to apply to all 
FLOSS projects. It is important to recognize that FLOSS is a complex, ongoing 
phenomenon and the majority of projects to date have either not managed to attract a 
critical mass of developers to sustain them or have yet failed to release working 
software [Hahn et al., 08]. However, we have no reason to believe that the situation in 
other viable, ongoing, successful FLOSS projects will be fundamentally different 
from the one found in FreeBSD. In order to substantiate this claim though, additional 
research is needed that will extend the single-case approach we have taken towards 
more representative (for example, large-scale surveys) or longitudinal (for example, 
action research or ethnography) paradigms. 

Acknowledgements 

We wish to thank the members of the FreeBSD community, for allowing us to 
participate in the project and for providing us with data and comments for this work.  

References 

[Akmanligil and Palvia, 04] Akmanligil, M. and Palvia, P. C.: Strategies for global information 
systems development, Information and Management, 42,1, pp.45-59, 2004. 

[Bird et al., 09] Bird, C., Nagappan, N., Devanbu, P., Gall, H. and Murphy, B.: Does distributed 
development affect software quality? An empirical case study of Windows Vista, 
Communications of the ACM, 52, 8, pp. 85-93, 2009. 

[Brooks, 75] Brooks, F.P.: The Mythical Man Month, Addison-Wesley, Reading, MA, 1975. 
[Carmel, 97] Carmel, E.: Thirteen assertions for globally dispersed software development 

research. In the Proceedings of the 30th Hawaii International Conference on System 
Sciences, p. 445, 1997.  

2641Giaglis G.M., Spinellis D.: Division of Effort ...



[Carmel, 99] Carmel, E.: Global Software Teams: Collaborating Across Borders and Time 
Zones, Prentice Hall, Upper Saddle River, NJ, 1999.  

[Cramton, 01] Cramton, C.D.: The mutual knowledge problem and its consequences for 
dispersed collaboration, Organization Science, 12, 3, pp. 346-371, 2001. 

[Crowston and Scozzi, 02] Crowston, K. and Scozzi, B.: Open source software projects as 
virtual organizations: competency rallying for software development, IEE Proceedings 
Software, 149, 1, pp. 3-17, 2002. 

[Elliott and Scacchi, 03] Elliott, M.S. and Scacchi, W.: Free software developers as an 
occupational community: resolving conflicts and fostering collaboration. In GROUP 
'03: Proceedings of the 2003 International ACM SIGGROUP Conference on 
Supporting Group Work, pp. 21-30, New York, 2003.  

[Espinosa et al., 02] Espinosa, J.A., Kraut, R.E., Slaughter, S.A., Lerch, J.F., Herbsleb, J.D. and 
Mockus, A.: Shared mental models, familiarity and coordination: a multi-method study 
of distributed software teams. In the Proceedings of the 2002 International Conference 
on Information Systems, Barcelona, Spain, December, pp. 425-433, 2002. 

[Espinosa et al., 03] Espinosa, J., Cummings, J., Wilson, J. and Pearce, B.: Team boundary 
issues across multiple global firms, Journal of Management Information Systems, 19, 4, 
pp. 157-190, 2003. 

[Feller and Fitzgerald, 01] Feller, J. and Fitzgerald, B.:  Understanding Open Source Software 
Development, Addison-Wesley, Reading, MA, 2001.  

[Fitzgerald, 06] Fitzgerald, B.:  The transformation of Open Source Software, MIS Quarterly, 
30, 3, pp. 587-598, 2006. 

[FreeBSD, 06] FreeBSD Project: Style-Kernel Source File Style Guide, Dec. 1995. FreeBSD 
Kernel Developer's Manual: style(9). Available online 
http://www.freebsd.org/docs.html, 2006.  

[Fuller et al., 07] Fuller, M.A., Hardin, A.M. and Davison, R.M.: Efficacy in technology-
mediated distributed teams, Journal of Management Information Systems, 23, 3, pp. 
209-235, 2007. 

[Hahn et al., 08] Hahn, J., Moon, J.Y. and Zhang, C.: Emergence of new project teams from 
open source software developer networks: impact of prior collaboration ties, 
Information Systems Research, 19, 3, pp. 369-391, 2008. 

[Hargreaves et al., 04] Hargreaves, E.,  Damian, D., Lanubile, F. and Chisan, J.: Global 
software development: Building a research community, SIGSOFT Software 
Engineering Notes, 29, 5, pp. 1-5, 2004.  

[Herbsleb and Grinter, 99] Herbsleb, J.D. and Grinter, R.E.: Splitting the organization and 
integrating the code: Conway's law revisited. In ICSE '99: Proceedings of the 21st 
international conference on Software engineering, pages 85-95, Los Alamitos, CA, 
USA, 1999.  

[Herbsleb and Mockus, 03] Herbsleb, J.D. and Mockus, A.: An empirical study of speed and 
communication in globally distributed software development. IEEE Transactions on 
Software Engineering, 29, 6, pp. 481-494, 2003.  

[Herbsleb and Moitra, 01] Herbsleb, J.D. and Moitra, D.: Global software development, IEEE 
Software, 18, 2, pp. 16-20, 2001.  

[Herbsleb et al, 05] Herbsleb, J.D., Paulish, D.J. and  Bass, M.: Global software development at 
Siemens: Experience from nine projects. In ICSE '05: Proceedings of the 27th 
International Conference on Software Engineering, pp. 524-533, New York, 2005.  

[Hertel et al., 03] Hertel, G., Neidner, S. and Hermann, S.: Motivation of software developers 
in open source projects: an internet-based survey of contributors to the Linux kernel, 
Research Policy, 32, 7, pp. 1159-1177, 2003. 

[Hinds and Kiesler, 02] Hinds, P. and Kiesler, S.: Distributed Work, MIT Press, Cambridge, 
MA, 2002. 

[Hofstede, 01] Hofstede, G.: Culture's consequences: comparing values, behaviors, institutions, 
and organizations across nations, Sage Publications, Thousand Oaks, CA, 2001. 

2642 Giaglis G.M., Spinellis D.: Division of Effort ...



[Huntley, 03] Huntley, C.L: Organizational learning in open-source software projects: an 
analysis of debugging data, IEEE Transactions on Engineering Management, 50, 4, pp. 
485-493, 2003. 

[Jalote and Jain, 04] Jalote, P. and Jain, G.: Assigning tasks in a 24-hour software development 
model. In 11th Asia-Pacific Software Engineering Conference, pp. 309-315, 2004.  

[Jarvenpaa et al, 04] Jarvenpaa, S.L., Shaw, T.R. and Staples, D.: Toward contextualizing 
theories of trust: The role of trust in global virtual teams, Information Systems 
Research, 15, 3, pp. 250-267, 2004. 

[Johnson et al., 02] Johnson, S.D., Suriya, C., Yoon, S.W., Berrett, J.V. and LaFleur, J.: Team 
development and group processes of virtual learning teams, Computers and Education, 
39, 4, pp. 379-393, 2002. 

[Karolak, 98] Karolak, D.W.: Global Software Development: Managing Virtual Teams and 
Environments, Wiley-IEEE CS Press, New York, 1998.  

[Kayworth and Leidner, 02] Kayworth, T. and Leidner, D.: Leadership effectiveness in global 
virtual teams, Journal of Management Information Systems, 18, 3, pp. 7-40, 2002. 

[Kiesler and Cummings, 02] Kiesler, S. and Cummings, J.N.: What do we know about 
proximity and distance in work groups? A legacy of research. In Hinds, P. and Kiesler, 
S. (Eds), Distributed Work, MIT Press, Cambridge, MA, 2002. 

[von Krogh and von Hippel, 06] von Krogh, G. and von Hippel, E.: The promise of research on 
open source software, Management Science, 52, 7, pp. 975–983, 2006. 

[von Krogh and Spaeth, 07] von Krogh, G. and Spaeth, S.: The open source software 
phenomenon: characteristics that promote research, Journal of Strategic Information 
Systems, 16, 3, pp. 236-253, 2007. 

[Lanubile et al., 03] Lanubile, F., Damian, D. and Oppenheimer, H.L.: Global software 
development: Technical, organizational, and social challenges, SIGSOFT Software 
Engineering Notes, 28, 6, pp. 2, 2003.  

[Lerner and Tirole, 02] Lerner, J. and Tirole, J.: Some simple economics of open source, 
Journal of Industrial Economics, 50, 2, pp. 197-234, 2002. 

[Lipnack and Stamps, 00] Lipnack, J. and Stamps, J.: Virtual Teams: People Working Across 
Boundaries with Technology, John Wiley and Sons, NY, 2000. 

[Madey et al., 04] Madey, G., Freeh, V. and Tynan, R.: Modeling the F/OSS community: a 
quantitative investigation. In Koch, S. (Ed), Free/Open Source Software Development, 
Idea Group Publishing, Hershey, PA, pp. 203-221, 2004. 

[MacGregor et al., 05] MacGregor, E., Hsieh, Y. and Kruchten, P.: Cultural patterns in software 
process mishaps: incidents in global projects. In HSSE '05: Proceedings of the 2005 
Workshop on Human and Social Factors of Software Engineering, pp. 1-5, New York, 
2005.  

[Massey et al., 03] Massey, A., Montoya-Weiss, M.M. and Hung, Y.: Because time matters: 
temporal coordination in global virtual project teams, Journal of Management 
Information Systems, 19, 4, pp. 129-159, 2003. 

[McKusick and Neville-Neil, 04] McKusick, M.K. and Neville-Neil, G.V.: The Design and 
Implementation of the FreeBSD Operating System, Addison-Wesley, Reading, MA, 
2004. 

[Mockus et al., 02] Mockus, A., Fielding, R. and Herbsleb, J.D.: Two case studies of open 
source software development: Apache and Mozilla, ACM Transactions on Software 
Engineering and Methodology, 11, 3, pp. 309-346, 2002.  

[Montoya-Weiss et al., 01] Montoya-Weiss, M.M., Massey, A.P. and Song, M.: Getting it 
together: temporal coordination and conflict management in global virtual teams, 
Academy of Management Journal, 44, 6, pp. 1251-1262, 2001. 

[Olson and Olson, 00] Olson, G.M. and Olson, J.S.: Distance matters, Human Computer 
Interaction, 15, 2, pp. 139-179, 2000. 

2643Giaglis G.M., Spinellis D.: Division of Effort ...



[Panteli and Davison, 05] Panteli, N. and Davison, R.: The role of subgroups in the 
communication patterns of global virtual teams, IEEE Transactions on Professional 
Communication, 48, 2, pp. 191-200, 2005. 

[Paul, 06] Paul, D.: Collaborative activities in virtual settings: a knowledge management 
perspective of telemedicine, Journal of Management Information Systems, 22, 4, pp. 
143-176, 2006. 

[Paulson et al., 04] Paulson, J.W., Succi, G. and Eberlein, A.: An empirical study of open-
source and closed-source software products, IEEE Transactions on Software 
Engineering, 30, 4, pp. 246-256, 2004.  

[Payne, 02] Payne, C.: On the security of open source software, Information Systems Journal, 
12, 1, pp. 61-78, 2002.  

[Reis and Fortes, 02] Reis, C.R. and Fortes, R.P.M: An overview of the software engineering 
process and tools in the Mozilla project. In the Proceedings of the Workshop on Open 
Source Software Development, Newcastle, UK, February, 2002. 

[Saers, 03] Saers, N.: A project model for the FreeBSD Project, PhD thesis, University of Oslo. 
Available online http://niklas.daers.com/thesis/thesis.html, 2003. 

[Sandusky and Gasser, 05] Sandusky, R.J. and Gasser, L.: Negotiation and the coordination of 
information and activity in distributed software problem management. In GROUP '05: 
Proceedings of the 2005 International ACM SIGGROUP Conference on Supporting 
Group Work, pp. 187-196, New York, 2005.  

[Sarker and Sahay, 03] Sarker, S. and Sahay, S.: Understanding virtual team development: an 
interpretive study, Journal of the Association for Information Systems, 4, 1, pp. 1-38, 
2003. 

[Scacchi, 02] Scacchi, W.: Understanding the requirements for developing open source 
software systems, IEE Proceedings Software, 149, 1, pp. 24-39, 2002. 

[Schmidt et al., 01] Schmidt, J., Montoya-Weiss, M. and Massey, A.: New product 
development decision making effectiveness: comparing individuals, face-to-face teams 
and virtual teams, Decision Sciences, 32, 4, pp. 575-600, 2001. 

[Sharma et al., 02] Sharma, S., Sugumaran, V. and Rajagopalan, B.: A framework for creating 
hybrid open-source software communities, Information Systems Journal, 12, 1, pp. 7-
25, 2002. 

[Spinellis, 06a] Spinellis, D.: Code Quality: The Open Source Perspective, Addison-Wesley, 
Boston, MA, 2006a.  

[Spinellis, 06b] Spinellis, D.: Global software development in the FreeBSD project. In the 
Proceedings of the International Workshop on Global Software Development for the 
Practitioner, May, pp. 73-79, 2006b. 

[Spinellis and Szyperski, 04] Spinellis, D. and Szyperski, C.: How is open source affecting 
software development? IEEE Software, 21, 1, pp. 28-33, 2004.  

[Stamelos et al., 02] Stamelos, I., Angelis, L., Oikonomou, A. and Bleris, G.L.: Code quality 
analysis in open source software development, Information Systems Journal, 12, 1, pp. 
43-60, 2002. 

[Stewart and Gosain, 06] Stewart, K.J. and Gosain, H.: The Impact of Ideology on 
Effectiveness in Open Source Software Development Teams, MIS Quarterly, 30, 2, pp. 
291-314, 2006. 

[Stewart et al., 06] Stewart, K.J., Ammeter, A.P. and Maruping, L.M. (2006) Impacts of license 
choice and organizational sponsorship on user interest and development activity in open 
source software projects, Information Systems Research, 17, 2, pp. 126-144. 

[Subramaniam et al., 09] Subramaniam, C., Sen, R. and Nelson, M.L.: Determinants of open 
source software project success: a longitudinal study, Decision Support Systems, 46, 2, 
pp. 576-585, 2009. 

[Subramanyam and Xia, 08] Subramanyam, R. and Xia, M.: Free/Libre open source software 
development in developing and developed countries: a conceptual framework with an 
exploratory study, Decision Support Systems, 46, 2, pp. 173-186, 2008. 

2644 Giaglis G.M., Spinellis D.: Division of Effort ...



[Wellman et al., 96] Wellman, B., Salaff, J., Dimitrova, D., Garton, L., Gulia, M. and 
Haythornwaite, C.: Computer networks as social networks: collaborative work, 
telework, and virtual community, Annual Review of Sociology, 22, 2, pp. 213-238, 
1996. 

[Ye and Kishida, 03] Ye, Y. and Kishida, K.: Towards an understanding of the motivation of 
open source software developers. In the Proceedings of the 25th International 
Conference on Software Engineering, IEEE Computer Society, Portland, OR, May, 
pp.419-429, 2003. 

 

2645Giaglis G.M., Spinellis D.: Division of Effort ...


