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Abstract

This report describes the design and implementation of HASKELL system. The
areas implemented are the lexical analysis, parsing, intepretation of the lambda
tree, and machine code generation. Because of the size, complexity and novelty
of the language many of these areas present particular difficulty. A considarable
amount of meta-programming was used in order to tackle the size of the project.
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Introduction

Haskell is a general-purpose, purely functional programming lan-
guage exhibiting many of the recent innovations in functional (as
well as other) programming language research, including higher or-
der functions, lazy evaluation, static polymorphic typing, user-defined
datatypes, pattern matching and list comprehensions. It is also a very
complete language in that is has a module facility, a well-defined
functional I/O system, and a rich set of primitive data types including
lists, arrays, arbitrary and fixed precision integers, and floating point
numbers. In this sense HASKELL represents both the culmination
and solidification of many years of research on functional languages.
[Hud89, p. 381]

In this report I present the implementation of the front and back ends (scanning,
parsing, interpreting and generating machine-specific code) for a HASKELL system.

This is the first implementation of the language done in the imperative paradigm
that I am aware of 1 so considerablescope for experimentation with its novel features
existed.

The very large scale of the project (more than 12000 lines of code) was an
additional challenge in organising it. Simplifying the implementation, minimising
errors and increasing efficiency, were acomplished by designing, implementing
and using four small meta-languages and a number of code management tools.

The novel features of this—committee designed—language such as layout,
orthogonality between operators and function identifiers, operators of variable

1The two other implementations that are under-way (Glasgow and Yale) are being written entirely
in HASKELL [Hud89, p. 405].
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precedence and associativity, source layout rules, type classes and modules have
never existed in a single language before 2. For some of the problems created by the
interaction of the various features (such as parsing curried function applications)
extended bibliographic research revealed that no formal solutions existed and thus
solutions had to be formalised.

The focus of attention on the front end of the language was efficiency, re-
liability and implementation of the full HASKELL standard. All of these goals
have, in my opinion, been achieved. On the back end the emphasis was more on
experimentation with code generation, profiling and debugging.

2PL/I might qualify if presented appropriately.
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Chapter 1

Lexical Analysis

The lexical analyser reads Haskell programs and converts them into a set of tokens.
It keeps track of the current row and column numbers, interprets string and character
escapes removes comments and other white space, converts integers and floating
point numbers and implements parts of the layout rule that are applicable during
the lexical analysis phase.

1.1 Technical Overview

The implementation and theoretical issues of lexical analysers are described in
[ASU85, pp. 83 – 157].

In [ASU85, p. 89] lex three approaches to the implementation of a lexical
analyser are listed. They are ordered, from easiest and least efficient and most
complicated and efficient as follows:

1. Using a lexical-analyser generator.

2. Writing a lexical analyser in a conventional systems–programming language
using the I/O facilities of the language for input.

3. Writing the lexical analyser in assembly and explicitly managing the reading
of input.

The solution finally adopted was a hybrid of 2 and 3; a hand crafted analyser
in C using a special input library.

The advantages of using language development tools are presented in [JL87].
A number of tools which automate the task of creating lexical analysers such as
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lex [Les75], mkscan [HL87], flex [Pax89] and the one described in [Heu86] are
available.

One of the tools described, the lexical analyser generator lex [Les75] was
initially used. Lex is not widely adopted. In [AKW79, section 5] the authors
indicate that they are using lex, but other implementation descriptions such as
[Joh82, p. 6] outline hand crafted analysers. This trend was verified by examination
of the source code of publicly available language systems such as the GNU C
compiler [Sta89] and PERL [Wal88]. The reason for this appears to be that
analysers generated by lex are slow and consume a lot of space. In fact, [Heu86]
suggests that nearly all lexical analysers for production compilers are written by
hand.

A formal design methodology for writing scanners is discussed in [DGM80].
A practical design outline for a hand crafted parser that is roughly the base for my
design is found in [Wai86]. The major difference of my implementation is that his
mkint, and mkfpt routines are implemented with inline code.

[Heu86] gives the basic rules to follow for creating a fast scanner:

“touch” characters as few times as possible,

avoid procedure calls.

Both of these rules have been followed in the design of the scanner.
A most efficient method for expanding tabs is described by [Wai85]. He

proposes to minimise the number of operations on input, eliminating the column
counting variable. Instead the column number is dynamically computed using the
pointer to the input buffer and another variable containing the amount of extra
space inserted. The other variable needs only updating when a tab is encountered.
The method was not chosen because of its additional complexity and the frequent
number of times the column number is examined in HASKELL .

The C standard input-output library initially used is described in [KR82, Ap-
pendix A]. An alternative, more efficient approach, can be found in [Hum88]. The
fast input library described minimises the copying of data and allows traversing
of the input using a character pointer. Speed advantages are mainly gained in line
oriented applications. Since most HASKELL tokens are not allowed to cross a line
boundary its use is very appropriate in this context. It was implemented in C for
the UNIX and MS-DOS operating systems.

A list of tasks which complicate the design of an analyser is given in [Joh82, p.
8]. In HASKELL this is complicated by the existence of the layout rule. In [ASU85,
p. 84] the possibility of simplifying the lexical analysis by splitting it into two
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phases, “scanning” and “lexical analysis proper” is outlined. I decided for reasons
of efficiency to use the integrated approach also found in [Joh82, p. 9].

In many parts of the code a sentinel is used to speed up a loop. This idea was
used in the lexical analyser of the SAIL compiler and can be found in [Ben82, p.
55]. The character classification tables described in section 1.5.1 are patterned on
the ctype macros [V7.82, ctype(3)]. The use of such tables to speed up processing
can be found in [Joh82, p. 8].

In section 1.4 an alternative design for the lexical analyser is presented.

1.2 General Description

The top routine of the analyser is yylex. This routine every time called returns
the numeric code of a new token. All the tokens that can exist are automatically
numbered with numbers above 255 by the parser generator yacc [Joh75]. Token
values below 256 are used to indicate single ASCII characters. Tokens that have
additional data associated with them (such as the strings, integers and symbols)
have that data or a pointer to it copied into the appropriate field of the union variable
yylval. This is also defined by the parser generator.

Yylex is used as an interface to a ring buffer. The ring buffer contains a list
of tokens that need to be returned to the parser. Access routines allow the addition
of tokens to both ends of the buffer, for reasons outlined in sections 2.3.5 and 2.6.
When the buffer is empty then the routine gettoken is called to supply the next
token.

Gettoken is the lexical analyser engine. Initially implemented using lex it
was reimplemented in C using a switch case for every possible input character.
Most tokens are recognised by a set of macros and returned immediately. More
complicatedcases such as comments, strings and characters are dealt by the routines
process comment, process string and process character.

At a lower level the input macro returns the next character from the input
stream. It counts the line and column number, virtually expanding tab characters.
It also provides for a single character pushback needed by most recognition loops.

The interface to the operating system is provided by an implementation of the
fio library ([Hum88] [V885, fio(3)]). The main routine used Frdline returns a
character pointer to a beginning of a line. According to [Hum90] after opening a
file no other initialisation is required for using the library.
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1.3 The Layout Rule

The layout rule of HASKELL allows for the layout of the problem to convey informa-
tion normally represented by the use of braces for block specifiers and semicolons
for declaration separators. With the layout rule if an item is indented more than the
rest in a place where an open brace is expected then an implicit brace is inserted.
Items that are indented by the same amount have a semicolon inserted before them
and a return to a previous level of indentation closes an implicitly opened brace.

The September specification of HASKELL [HWA 89, p. 3] defined that an
opening brace could be expected at three different places:

1. after the export list of a module,

2. after the keyword where and

3. after the keyword of

Since the first place is determined by the grammar the lexical analyser could
not by itself determine when an opening brace was required. A tie-in with the
parser was needed. This was done by the addition of a rule open brace in
the grammar which before asking for a token from the lexical analyser called the
function brace needed. That would then check to see if a brace was available
in the file. If one was not available it would push one in the input stream.

The April version of the document [HWA 90, p. 3] simplified this situation
by requiring a where identifier after the export list. Thus the lexical analyser can
always know when an open brace can possibly be inserted.

The rule for inserting an open brace specifies that the next token needs to be
examined. This can be implemented by having the scanner recursively call itself,
so that whitespace and comments are removed, tabs are expanded and columns
counted.

This approach was found to be very messy. In normal operation the scanner
is called by the parser. Some state information such as the line and column
numbers needs to be saved between calls. The recursive call destroyed the state
information and made this approach very difficult to implement correctly. An
alternative approach was opted for. A mini-scanner was written. The mini-scanner
recognises only whitespace-class tokens, like comments, and genuine whitespace.
Whenever the next token needs to be examined the mini-scanner is called.

Indentation levels are kept in an integer stack. A stack pointer always points
to the current indentation level. The stack is of finite length and checks against
over and underflow are made. Indentation forced the addition of one more piece
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of state information to the scanner. In certain places a suitably indented token may
terminate more than one levels of blocks. Consequently the scanner needs to return
a number of closing braces. A static variable is checked every time the scanner
operates to see if some more closing braces need to be returned.

The April HASKELL document gives an additional rule for the layout. Specifi-
cally a semicolon or brace is inserted whenever the next syntactical item is illegal,
but a semicolon or brace would be legal. This rule can not be handled by the lexical
analyser. Is section 2.6 I describe how this problem was solved by modifying the
parser.

1.4 Alternative Design

From the above it should be clear that the implementation of the scanner is not very
clean. The operation of the scanner is dependent on seven state items. These are:

1. The current column.

2. The current line number.

3. A pointer to the next character to be processes in the input stream.

4. A possible pushback character, its line number and column. This is used to
implement a one level pushback stack.

5. The column of the last character processed. This is needed because if a
character is pushed back the column can not be just decrement by one due
to complications with tab expanding.

6. All the indentation levels up to the current indentation.

7. Possible additional close braces that may need to be returned.

As is described in section 2.5 a further buffer is needed to push arbitrary tokens.
I tried to think of a programming paradigm that could naturally accommodate

the needs of the scanner in a clean way. The best approach would be using corou-
tines [Hoa78]. An example on how programs can be structured using coroutines
can be found in [Pal82].

The scanner and the parser work as coroutines. Whenever the parser needs a
token, it is suspended and the scanner is run. The scanner works until it is ready
to pass a token back to the parser and then gets suspended. In this way the state
information is implicitly kept by the coroutining mechanism resulting in a cleaner
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implementation. One further advantage of this approach is that it leads to easy
parallelisation.

Two ways of implementing the scanner as coroutines were examined. The one
involves breaking the program into two processes. The one process is the scanner
and the other the parser. The two processes communicate using a pipe and are
suspended and resumed under operating system control.

The other way is implementing coroutines inside C . A monitor is used to
control the coroutining. When the monitor starts a C function as a coroutine it
allocates a new stack in dynamic memory and assigns that stack to the function.
Communication is also done via the monitor, which can switch processes by
switching the stacks. An implementation of coroutines for C can be found in
[Bai85a].

None of the two approaches was implemented because of various problems.

The two process approach is very inefficient. Every token needs to pass
through the operating system two times (one write and one read) in order
to go from one process to the other. This involves two system calls and a
context switch. A typical time for a system call is 350 [Fed84, p. 1796]
and for a context switch 600 [Fed84, p. 1798]. The total overhead for a
single token would be 1 3 . The performance finally obtained (see section
1.5.6 was 128 per token) so this approach would make the scanner ten
times slower.

Both approaches are not portable. There is no standard C library for corou-
tines and switching the stack — although possible within C — needs to
be done in a different way on different machine architectures and compiler
argument passing conventions. The two process implementation would limit
the system to the Unix operating system.

The operation of the scanner and the parser needs closer coupling than that
provided by a pipe. They both need to share the symbol table as the lexical
category of some tokens can be redefined by the user.

1.5 Coding for Speed

The lexical analyser was initially built using the lex [Les75] lexical analyser gen-
erator. Some aspects of HASKELL required however modifications to the code
produced by lex. This meant adding another level of control around the input
processing of lex, slowing down the whole operation. This leaded to the scan-
ning process being redesigned with the aim of improving speed. The areas where
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improvement could be made were token recognition, character copying, memory
allocation and symbol table maintenance.

1.5.1 Token Recognition

The top level of token recognition is built using a C switch statement. A different
case is used for almost every character. Since the table is quite dense it is compiled
by most C compilers into an indexed jump table. When a character arrives, it is used
as an index into a table of code locations and a jump is made to that location. The
separate entries then process the token according to its lexical category. Separate
functions are used to scan characters, strings and comments. All other scans are
done in the main function in order to avoid the function calling overhead. Macros
are used instead of functions for the same reason.

A procedure was developed for writing macros in a disciplined rather than
the usual ad-hoc manner in order to enhance code readability and maintainability.
Specifically macros were written in a multi line form like normal procedures using
indentation to make them more clear. The C “alternative” operator ? : was
indented like an if statement and brackets were used instead of braces. Finally
macros that contained semicolons in them were wrapped in a do macro
while(0) to give them the syntactic quality of a single statement (otherwise they
might trigger obscure bugs if used as a single statement after an if.

In a number of places tests were needed to check if a character belonged to
a certain class (octal digit, identifier, symbol etc.). There is a C set of macros,
the ctype macros, that are designed to distinguish between character classes, but
many character classes defined by HASKELL , such as octal digits and operator
symbols are not part of the ctype macros. The usual way to handle such situations
is to code as strchr("class", ch), the intent being to check if ch is one of
the characters in class. Strch returns an index into the string given as the first
argument of the character given as the second argument, or NULL if the character
is not in the string. Thus it can be used to classify characters. The problem with
this approach is that it is slow. It can involve the function calling overhead and
even in compilers that implement it with in-line code the average time needed for
testing if a character belongs in an n character class is 2 .

The problem was solved by developing a small tool; the character type com-
piler: ctc. Ctc takes as input a file containing sets of recognition macros the
user wants to define and regular expressions defining the characters for which the
macro should return true. The file is line based. Comments starting with # and
blank lines are allowed. The following lines represent a portion of the input file
used for Haskell tokens.
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# Rest of an identifier
R isidrest [A-Za-z0-9_’]

# SYmbol start
Y issymstart [!#$%&*+./<=>?@\\ˆ|˜]

Based on the input the compiler creates a C file containing a bit vector table and
the suitable macros. The macros take a character as input and use the character to
index into the bit vector table. An and operation is performed on the table element
based on the character class. Different character classes are represented by different
bits being set. In this way with typically two CPU instructions a character can be
portably classified. The character class compiler was itself written in the Perl
programming language [Wal88].

1.5.2 Character Copying

In a typical lex based lexical analyser a character is copied three times before
arriving in dynamically allocated memory. First the character is copied from the
kernel buffer memory into a buffer of the stdio library. From the stdio buffer it
is then copied to the internal lex array yytext. When an identifier needs to be
saved, dynamic memory is allocated and it is finally copied into that memory. The
copying from the stdio buffer to the data area of lex is particularly expensive since
it is implemented as two levels of macros, the getc macro of the stdio library and
the input macro of lex.

The method used involved the implementation of an alternative input output
library. The design of the fio (fast input output) library [Hum88] outlined in
[Hum88] offered a very efficient alternative. Access to the fio buffer is directly
done via a pointer, in a line by line fashion. Since most tokens in HASKELL can
not span lines this design was found to be suitable. The input part of fio was
implemented and separately tested. It was found to be significantly faster than
stdio.

A special macro, input, for interfacing to the fio library was created. The
tasks of this macro are:

Taking characters out of the fio buffer.

Counting lines (needed for error reporting).

Maintaining a column pointer and expanding tabs (needed for the layout
rules).
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Checking for end of file.

Cooperating with the one character pushback facility.

Through very careful coding the operations above are typically performed in 14
CPU instructions. 1

1.5.3 Memory Allocation

Tokens that form identifiers need to be saved from the scanner buffer into dynami-
cally allocated memory so that they will not be overwritten by new input. Memory
allocation, especially when allocating many small blocks, is an expensive opera-
tion. For this reason an alternative approach was used. A big hunk of memory
was requested that was then treated like a stack. Identifiers are put into it and
terminated by a trailing 0. A stack pointer points the the first free character in the
stack, while a counter determines characters remaining. When the stack is filled a
new one is allocated.

1.5.4 Symbol Table Updates

Every symbol encountered is placed directly into the symbol table. The way the
symbol table is organised ensures that if the symbol is already defined, no additional
entry will be made. The symbols are placed into the symbol table directly from
the lexical analyser input buffer. Subsequently the symbol table entry is compared
against the address of the symbol buffer. If the symbol is located in the symbol
buffer it is then copied to dynamically allocated memory as described above. In
this way unnecessary copying and memory allocation and freeing are avoided.

1.5.5 The Ultimate Combination

The three types of improvement outlined above present the possibility to combine
the tasks of reading a token, recognising it, and saving it into a single task! Many
tokens, like user defined identifiers can be recognised by repeated uses of one of the
ctype macros described. When the scanner finds an identifier it transfers control
to the save macro. The save macro copies characters from the fio buffer to
the dynamic memory stack (adjusting the stack pointer) while a given character
classification macro (which is passed as a parameter) holds. In a typical case

1Most common execution path of the input macro compiled for the Intel 80286 family using
the Microsoft C compiler version 5.1 with maximum optimisations.
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an identifier is recognised and copied to dynamic memory and all counters are
maintained using 28 CPU instructions per character.

1.5.6 Performance

The resulting scanner when applied to the Haskell standard prelude scanned at a
speed of 7800 tokens per second (128 per token) 2

With a typical instruction timing for this CPU configuration of 3 this averages
to 420 CPU instructions per token. This is consistent with the 28 instructions
needed for scanning an identifier character. Identifiers are typically 6 characters
in length and one has to allow for operating system overhead, fio library overhead,
memory management and scanning of more complicated tokens. (Identifiers are
the second fastest token to scan, the fastest being single characters. Care to their
implementation was taken because they occur very frequently.)

The previous implementation using lex was not completed to scan all the token
types and thus a comparison of the performance of the two is not very meaningful
since the lex implementation would become slower if it were to implement all
the functionality that was put into the C based scanner. A rough insight to the
performance improvement can be obtained by the fact that the (deficient) lex–
based scanner was working at a speed of 4500 tokens per second.

1.6 Testing

The lexical analyser was tested using a specially built test harness. The harness
repeatedly calls the lexical analyser and displays the returned token and its associ-
ated value. Tokens are displayed as symbolic constants and not as numbers making
the output much easier to read. This is achieved by reading the token definition
file y.tab.h into a hash table when the program is run. This automatic run-time
configuration of the test harness ensures that it is always up-to-date.

During the testing 9 errors were found in the lex generated lexical analyser
before it was made obsolete by the C hand crafted version. Up to now 31 errors
have been found in C version with their rate of incidence constantly diminishing.
Using the reliability index formula given in [Per87, p. 2.5] this gives an RI of 97%.

2All timing and profiling tests were performed on a COMPAQ DESKPRO 386/20e running
COMPAQ Personal Computer DOS 3.31. The programs were compiled using the Microsoft C
compiler version 5.1.
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Chapter 2

Parsing

2.1 Technical Overview

The subject of language grammars, parsing and syntax directed translation has
received the attention of hundreds of monographes and articles. An introductory
discussion of syntax analysis can be found in [ASU85, pp. 159–278] and of syntax
directed translation in [ASU85, pp. 279–342].

I decided to use yacc [Joh75] for the implementation of the parser as it would
provide an organised framework for basing the parser, generate efficient code and
allow for error recovery. Error recovery is very important in HASKELL as it is
needed for implementing the layout rule! A general overview of LR parsing, the
algorithms used by yacc and error recovery can by found in [AJ74].

HASKELL is a very difficult language to parse. A more general critique of
this aspect of the language is given in section C. Problems I encountered, have
been addressed at the implementation of various—by modern standards—baroque
languages. A way to handle operators with varying syntactic rules of the APL
language is given in [Str77]. The use of a two-level grammar to handle the
complexity of the language PL/I can be found in [Mar84]. This scheme, described
in section 2.3.5, is used to handle a shift-reduce conflict in the HASKELL grammar
associated with the parsing of list comprehension qualifiers.

HASKELL features infix operators with user defined precedence and associativ-
ity. Handling them in a yacc-based grammar is very difficult. A way for generalised
parsing of distfix operators is given in [Jon86]. Jones (who is also a member of the
HASKELL committee) used this scheme in a modified version of the Sasl functional
language. Jones’ scheme provides the basic idea of having a special token value
associated with all operators with a special syntactic feature (infix operators are a
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specialised case of distfix operators). He does not however address the problem
of varying precedence and associativity. Thus the scheme was extended in a way
described in section 2.3.1.

Expression juxtaposition without an operator as used in HASKELL is also found
in the awk programming language [AKW88] for indicating string concatenation.
That feature is responsible for 156 shift-reduce errors in the Eighth Edition [V885]
nawk grammar. The authors have attempted to fix this by adding a%prec keyword
in the yacc specification rule for string concatenation. This method does not work
for reasons explained in section 2.3.1. Running yacc on the unaltered source and on
the source without the precedence specifier produces the same transition tables. 1

The source for the project GNU reimplementation of awk, gawk [CRRS89] contains
exactly the same fruitless attempt.

The C language is not LALR(1) because of the typedef keyword. An
implementationnote in [HJ87, p. 118] explains that C compilers based on yacc such
as the portable C compiler [Joh82] deal with this problem by feeding information
back to the lexical analyser. The same approach was used for some of the HASKELL

grammar problems.
As discussed in section 2.4 the most efficient way to build a tree is to build it

in reverse order and, when finished, reverse the whole structure. The list reversal
algorithm used, and a very elegant abstraction for implementing it is given by
[Suz82].

Finally some limited discussion of module implementation can be found in
[Wir77].

2.2 General Description

The parser is contained in a single yacc source file, parse.y. The file contains
the type declarations for all the possible nodes and tokens, the grammar rules and
three node building functions. The grammar is very loosely based on the one that
appears in [HWA 90, pp. 116–120]. A number of rules were changed in order to
remove ambiguities. The ambiguities were removed by the following techniques:

Restructuring of grammar rules.

Addition of new tokens and closer interaction with the lexical analyser.

Yacc precedence rules.

1The number of shift-reduce errors is increased from 154 to 160, but the default actions of yacc
remain the same.
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Merging of grammar rules and addition of semantic analysis.

Most tree nodes are built on the fly, since they are not built in more than one
place. A special C macro, defstruc, is defined that creates a tree node of the
appropriate size and type on the heap.

2.3 Handling the Grammar Ambiguities

2.3.1 Definable Operators and Function Applications

The HASKELL grammar contains two features that are very difficult to parse. The
user may define new infix operators and constructors using the infixl,infixr
and infix keywords. When defining those keywords the user specifies their asso-
ciativity (left associative, right associative or non associative) and their precedence
level from 0 to 10. This associativity and precedence defines how expressions
and patterns will be parsed at compile time. This is a major problem since the
behaviour of the parser needs to be changed during parse time. For example with
a declaration infixl 3 - the expression a - b - c must be parsed as ((a
- b) - c)whereas with a declaration infixr 3 - the same expression must
be parsed as (a - (b - c)).

Fixed precedence and associativity of expression operators can be handled
very elegantly in yacc by using the precedence rules (%left, %right and
%noassoc). As an example a language for a simple calculator can be defined as:

expr : expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| ’-’ expr
| ’(’ expr ’)’
| tNUMBER
;

This grammar is ambiguous. A number token can either be reduced to an expression
or the parser state can be shifted to a state waiting for an operator. It can be
dissambiguified either by splitting the rule into many subrules (expr, term, factor)
or by adding the following rules at the beginning of the yacc grammar:

%left ’+’ ’-’
%left ’*’ ’/’
%left uminus

13



The rule for unary minus needs to be changed to| ’-’ expr %prec uminus.
These changes have the effect of associating a precedence and an associativity
with each possible input token. In addition each rule inherits the precedence and
associativity of the last token with defined precedence found in its body.

In the case of a parsing conflict yacc behaves as follows:

If no precedence is associated with the rule than an error is reported when
creating the parse tables.

If there is a precedence associated with the two rules that create the conflict
then the action dictated by the rule with the highest precedence is performed.

If both rules have the same precedence then the action depends on the
associativity of the input token:

– If the input token is left associative then a reduce is performed.

– If the input token is left associative then a shift is performed.

– If the input token has no associativity related to it then a parse error is
generated.

The user specification of the associativity and fixity of operators and construc-
tors can be handled by defining a series of symbolic operators of fixed precedence
and associativity for all possible specifications. These are defined as tokens. When
the user specifies the fixity of an operator or constructor, the parser updates the
symbol table specifying giving a new token value to the token. Every time the
lexical analyser encounters the token it checks the symbol table to see if its value
has been redefined. If it has it returns its new value, else it returns its default value.

This approach would mean the addition of 30 tokens for the operators (10
precedence levels and 3 kinds of associativity) and 30 for the constructors. Doing
this produced some obscure bugs. It turned out that yacc has a fixed size table
for recording precedence rules which overflowed without a warning into another
data structure. By merging the specifications for the constructors with those of the
operators the problem was eliminated.

The existence of currying in HASKELL creates an additional problem when
parsing. The HASKELL syntax defines function application as the textual juxtaposi-
tion of a function to its arguments. As functions are first class citizens in HASKELL

this is in effect the juxtaposition of two expressions. This operation has a specific
precedence level [HWA 90, p. 10] and binds left to right.

Since no token is associated with function application per-se the precedence
and binding can not be specified directly. Using the %prec keyword in association
with the rule (as misguidedly done in the awk source).
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This precedence can not be enforced using the %prec keyword. As explained
above the disambiguifying values are associated with specific tokens. The presence
of a %prec keyword alters the precedence of those tokens. Since an expression
can start with a token other than an operator the precedence rule will not come into
effect for those other tokens. The solution to this problem is to find the
set of the expression and give the requisite precedence to its members. The set

for a string of grammar symbols is defined [ASU85, pp. 188–189]
to be the set of terminals that begin the strings derived from . The following rules
can be used for determining for a grammar symbol :

1. If is a terminal, then is .

2. If is a production, then is added to .

3. If is a nonterminal and 1 2 is a production, then for all
, is placed in if

Applying the rules above to expr yields the set:

tVARID tCONID tCONIDCLS tCONIDCON tINT tDOUBLE tCHAR tSTRING ’(’ ’[’

All the members of the set were given the appropriate precedence and binding for
function application. In addition a sentinel Pfuncap was also given the same
precedence to use in conjunction with %prec in the rule for unary minus.

2.3.2 General

In this section I explain the major techniques used for handling grammar ambigu-
ities. A step by step account on how all the problems were eliminated is given in
sections 2.3.3 and 2.3.5.

2.3.3 September Version

The grammar as given in the September 89 document generates 22 reduce reduce
errors and 106 shift reduce errors. The changes made to the grammar and their
effects on the number of errors are given in table 2.1. Further explanations are
given bellow.

1 The lexical analyser was made to return different tokens if an identifier identifies
a class or another object.

2 The specifications for varfun and infun were:
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Change Errors
shift / reduce reduce / reduce

Initial 106 22
Lexical tie 1 102 22
Import list restructuring 101 22
varfun and infun 2 99 22
Lexical tie 3 99 16
Recursive atypelist 4 83 16
Conflicting atypelist 5 75 9
Precedence rules for exp and aexp 6 23 9

Table 2.1: Changes to the September Grammar

infun <- infun ’;’ infun | ...

The intent was probably:

infundef <- infun | infundef ’;’ infun
infun <- ...

3 The lexical analyser was made to return a different token according to the arity
of constant identifier type tycon.

4 The grammar definition foratypelistwas not left recursive. It was converted
to left recursive form as recommended in [Joh75].

5 The grammar included two conflicting definitions for atypelist. They were
split into atypelist0 and atypelst1 for cases where different arity is
expected.

6 The two grammar rules for expressions exp and aexp were merged. Yacc
precedence (%left, %right and %noassoc) disambiguifying rules for
all expressions. The rule specifying function application was extremely
difficult to dissambiguify. The disambiguifying mechanism of yacc specifies
that the token or literal appearing in the rule must have a precedence and
binding type associated with it. The function application grammar rule has
no literal or token. Specifying a precedence using the %prec keyword is
not possible since the precedence given with %prec is used to override the
precedence of any other tokens or literals. The solution adopted was to give
the appropriate precedence to all literals that could form the beginning of a
new expression.

16



Two shift of the remaining reduce conflicts are part of the language. The
definition of topdecl allows a context to precede the class and the instance
definitions. However a context can contain class names, which also occur in the
class and instance definition expected.

At this state, the April version [HWA 90] of the HASKELL report was published.

2.3.4 April Grammar changes

The changes made in the grammar by the April report were so numerous that the
grammar had to be written from scratch. The changes that affected the grammar
are:

Many of the names used in the syntax description changed. I had tried to stay
close to the terminology used, and found that most terms used had changed.
(e.g. imports was changed to impdecls).

Triple dot which indicated that a whole module was exported changed to
double dot.

The precedences of conditional expressions and where expressions were
changed.

The things that could be exported changed from a list of names to a more
specific and limited list. The ability to export type constructors and type
classes as a whole unit was introduced, while the syntax for exporting a
whole module changed so as not to require brackets before the module
name.

Syntax for renaming changed. The token to was changed to the token as.

Type declarations were apparently redesigned from scratch:

– Tuple declarations went away.

– The class derivation was introduced.

– The expose type declaration disappeared .

– The where clause in instance declarations became optional.

– The default declaration was introduced.

– In low level type declarations the variable and identifier definitions
were removed.

– The unit type was introduced.
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Brackets were introduced around the class list in a context.

A vertical bar symbol was added to separate constructors in constructor lists

The class declaration using a double colon was removed

A new syntax for class instances was introduced.

Else is no longer optional in expressions

Case and expression type signature was was moved from aexp to exp.

The empty expression () was introduced

Qualifiers were made optional

The successor pattern and the unit patterns were introduced.

The new tokens to, hiding, default and deriving were intro-
duced.

Fixes were made compulsory.

2.3.5 April Version

The grammar as given in the April 90 document generates 24 reduce reduce errors
and 113 shift reduce errors (more than those in the September document). An
outline of the progress in removing the problems from the grammar is given in
table 2.2. Details are given in the list bellow (the numbers in brackets indicate the
number of shift-reduce and reduce-reduce errors after each change).

Sat May 19 11:01:45 (112,24) In the rule fortopdeclmoved the rule foroptcontext
directly into the instance declaration.

Sat May 19 11:05:22 (112,17) In the rule for pat made the - in from of integer
mandatory. The case where the minus is not mandatory is covered by apat
which can be a literal which can be an integer. This removed seven
reduce-reduce conflicts.

Sat May 19 11:08:50 (111,17) In rule for decl was modified by merging the
optcontext rule.

Sat May 19 11:13:09 (109,15) In rule for topdecl the type list in brackets al-
ternative was in conflict with the atype unit type, parenthesized type and
tuple declarations.
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Change Date Errors
shift / reduce reduce / reduce

Initial 113 24
Sat May 19 11:01:45 112 24
Sat May 19 11:05:22 112 17
Sat May 19 11:08:50 111 17
Sat May 19 11:13:09 109 15
Sat May 19 11:26:25 108 15
Sat May 19 11:29:48 107 15
Sat May 19 11:36:18 107 15
Sat May 19 11:42:30 106 15
Sat May 19 11:52:30 74 15
Sat May 19 12:04:24 140 15
Sat May 19 12:14:48 160 21
Sat May 19 14:28:58 352 21
Sat May 19 14:33:57 37 30
Sat May 19 14:39:21 2 30
Sat May 19 14:52:18 1 0
Sat May 19 14:58:27 0 30
Sat May 19 15:13:04 0 0
Sun Jun 09 22:51:40 0 3
Sun Jun 10 13:33:03 1 0

Table 2.2: Changes to the April Grammar
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Sat May 19 11:26:25 (108,15) Gave precedence to tCONOP to defined how the
sequence:

pat1 conop pat2 conop pat3

should be parsed using the pat rule.

Sat May 19 11:29:48 (107,15) Moved the optcontext rule explicitly into the
exp rule.

Sat May 19 11:36:18 (107,15) For the ruleaexpmoved an extra rule that defined
the optional second expression in an arithmetic sequence into the rule. This
change did not change the number of errors.

Sat May 19 11:42:30 (106,15) Restructured the aexp rule. Made the lists of 0,
1 and 2 elements explicit so that they would not conflict with the start of an
arithmetic sequence and then allowed for an exprlist3 followed by more
expressions.

Sat May 19 11:52:30 (74,15) In the rule for exp changed the expression type
signature derivation from

exp :: [context =>] type

aexp :: [context =>] type.

The former case was ambiguous: is exp + exp :: X interpreted as
(exp + exp) :: X or as exp + (exp :: X). It turns out that
section 3.11 of the manual specifies aexp instead of exp.

Sat May 19 12:04:24 (140,15) Replaced all occurrences of conwith conid and
all of var with varid. The result was disappointing. Although the two
were supposed to be the same I had defined con wrongly as only tCONCLS
and thus a number of reduce reduce errors were hidden.

Sat May 19 12:14:48 (160,21) Replaced all occurrences of conidwithtCONID
| tCONIDCON | tCONIDCLS.

Sat May 19 14:28:58 (352,21) Removed the function application rule to see the
effect. This change clearly demonstrates the ambiguity that arises from
curried function application.
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Sat May 19 14:33:57 (37,30) Changed all occurrences of varid to tVARID.
Changed literal in the definition of apat to its constituents tINT
tSTRING etc. In this way a “precedes” set for aexp which contains
all the tokens that can start an aexp was formed. This set was placed in a
precedence disambiguifying rule for function application.

Sat May 19 14:39:21 (2,30) Corrected the “precedes” set used for function appli-
cation. Had used ’ ’ instead of ’ ’ as the start token character of lists.

Sat May 19 14:52:18 (1,0) Removed the list comprehension rule from qual to
confirm its effect on the reduce-reduce errors. The hypothesis was that
all of these errors were a result of that rule. A solution would need a
very complicate and unstructured lexical tie, so if this rule was not a major
contributor another solution could be found. The hypothesis was verified, so
the lexical tie was introduced.

Sat May 19 14:58:27 (0,30) Introduced a quallist in the rule for qual to
remove the ambiguity over how ‘,’ would associate.

Sat May 19 15:13:04 (0,0) Added back the qual rule and the lexical tie. A
new pseudo-token was introduced tPATCONTEXT. This token does not
represent a real lexical item. It represents a context where the lexical anal-
yser has done a bit of scanning ahead as instructed by the parser by the
check patcontext() function to see if there is a tLARROW on the cur-
rent scope level in the next tokens scanned up to a ‘]’ or ‘,’. This is
quite complicated since the lexical analyser must invoke itself to remove
comments, work out the layout rule etc. Furthermore all tokens scanned
must be pushed back in some sort of stack with a tPATCONTEXT possibly
on the top of the stack. For all this the lexical analyser must be reentrant.
Since the lexical analyser is called by the parser and not the opposite it must
also have state associated with it. This structuring conflict was resolved by
adding one more level of function indirection to the lexical analyser.

Sun Jun 09 22:51:40 (0,3) Added three errors in order to parse correctly succes-
sor patterns. The rule specifying the successor pattern was never used.
When a variable identifier was found it was directly reduced to an apat.
This happened without a warning because of the precedence rules given to
TVARID in order to resolve function application ambiguities in expressions.
The solution tried was to replace the tVARID with a apat.
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Sun Jun 10 13:33:03 (1,0) By specifying a more general rule for successor pat-
terns (their left and right hand sides can be patterns) and adding semantics
checking reduced the conflicts to a single shift/reduce. This occurs in the
case where a pattern appears on the left hand side. In that case the left hand
side can contain variable operators. Thus x + 1 can either be parsed as two
patterns separated by the + operator or as the successor pattern of x.

2.4 The Parse Tree

The result of applying the HASKELL grammar on a set of files is a parse tree.
The parse tree is a tree of structures representing different syntactic elements of
HASKELL . In places where a single syntactic element could have several underlying
representations (e.g. an expression can be an integer or a function) a union within
the structure was used to allow the different types to be stored in the same place.

In some cases different objects of the same type have different memory require-
ments. In theory memory can be conserved by using a pointer to a dynamically
allocated data structure of the appropriate length. However, the differences in
memory requirements were small (typically no more than 8 bytes) and for some
implementations of the dynamic memory allocator the allocator overhead (12 bytes
in the one described in [KR88, p. 185]) was higher than the actual space savings.

More space savings were achieved by combining lists and single items. In
many cases single items are the exception, and usually they are composed into
lists. In those cases the overhead of separately creating and managing lists of items
was reduced by creating the items as lists of one element for the beginning.

Enumerated types are used to distinguish differing objects. These offer in-
creased functionality compared to # define’s in type checking and debugger
use.

All lists in the tree have the next pointer as the first element in the structure.
This allows for general functions on lists to be written. Lists are built in the reverse
order. Without any special pointers (which take extra space and time to maintain)
adding an element at the end of a list of length takes operations. Thus building
a list of length has an overhead of 1 2. On the contrary a list of
elements, once built, can be reversed in operations.

The tree reversal is performed at the end of the parsing. An automatically
generatedprogramtraverses all the tree. It distinguishes between linked list anchors
and linked list intermediate pointers. When a list anchor is found the list reversal
algorithm is applied to it. Then the tree reversal operation continues for each
element of the list. The program is automatically generated by a perl script based
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on the tree definition header tree.h in a manner similar to the one described in
section 2.10.

In some cases in the grammar, syntactic sugar is translated into concrete
HASKELL on the fly. For example - exp is translated to a function application of
the negate function.

2.5 The Mini-Parser

As indicated in section 2.3.5 in some cases the lexical analyser needs to parse
ahead to determine in what context the parser is in. In order to do this a mini parser
was developed. This parser, written in C, uses precedence rules to determine how
far to parse. Round, square and curly brackets are counted and matched. Since its
input comes from the lexical analyser white space and comments are automatically
removed. The follows set [ASU85, p. 188] for the specific sentential form is used
to terminate the parse ahead.

Since the mini parser does not do any real work the tokens it consumes must
be placed back for delivery to the real parser. In addition if it finds the context to
be a pattern context then the pseudo token tPATCONTEXTmust be placed in the
beginning of the token list. Furthermore it is possible for the mini parser to be
called before the list of tokens that have been stored from a previous invocation
has been exhausted. For these reasons a data structure is needed that can have
items inserted on both ends, and removed from one end. Additions and removals
from the data structure should be able to be intermixed. In order to achieve the
desired effect a ring buffer was used. Two pointers indicate the beginning and the
end of the data. The buffer is empty when the two pointers coincide. (Naturally
a test is made to check if the buffer overflows each time an item is added). The
buffer contains the token number of each token that is consumed and additionally
its value. This is set be the lexical analyser into the yylval union and is the
copied in the buffer.

Calls to the scanner are passed through an additional layer of code which checks
the ring buffer. If there is an item in the ring buffer then that item is removed and
returned. In all other cases the value of the real lexical analyser is returned.

2.6 The layout rule

As explained in section 1.3 not all layout rules can be resolved by the lexical
analyser. The rule that specifies that a brace needs to be inserted whenever the next
item is illegal, but a brace would be legal is more easily handled by the parser. (It
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can be handled by the scanner by forming the precedes set for the closing brace,
the follows set for every item for the precedes set and returning a closing brace
between every pair of tokens where ).

The solution adopted was based on yacc’s error recovery mechanism [Joh75, p.
25]. The token was substituted by the rule close brace. The close brace
rule can either be literal closing brace or a yacc error production. A yacc error
production is exactly the token that would be legal in the case where the next
token is illegal. This fits precisely with the description of the layout rule. When
the error production is invoked the lexical analyser is informed by calling the
close brace procedure. This is done in order to remove the pending closing
brace form the lexical analysers stack. After the error production the yacc macro
yyerrok is called to allow the trapping of any other errors. (Yacc will otherwise
suppress any errors unless four tokens have been successfully parsed. This is not
acceptable in this case.)

2.7 Dealing With Interface and Implementation Modules

The interface modules are mostly a subset of the implementation modules. Dupli-
cating the grammar rules for the interface modules seemed unnecessary duplication
of effort and code, so I decided to use the implementation module rules and do some
semantic checking within the rules. For this reason a global variable was added
module typewhich contained the type of module that was parsed. This variable
is set within the grammar rules (i.e. in code inserted between the yacc tokens), as
there is the only place in the grammar where one can distinguish between the two
types of modules. In order to allow for the abbreviated module the open brace of
the body was moved in the module production rule.

2.8 Lexical Ties

Up to now three lexical ties have been described:

1. The addition of a pseudo-token returned by the lexical analyser by the request
of the parser to find if a qualifier is a pattern or an expression (section 2.3.5).

2. Informing the lexical analyser that a brace was added by a grammar rule so
that the scanner could adjust the layout tables (section 2.6).

3. Changing the token value of the operators and constructors after the user
defines their associativity and precedence (section 2.3.1).
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Token Where
aconid modid
con constr
conid 1 export
conop op
literal aexp
modid 1 export
tycls 1 export
tycon export
tyvar 1 atype
var aexp
varid export
varop op

Table 2.3: Tokens Appearing in the HASKELL Grammar

Token Synonym Representation (example)
var varid name or (+-)
con conid Name or (:+-)
varop +- or ‘name‘
conop :+- or ‘Name‘
tyvar avarid name
tycon aconid Name
tycls aconid Name
modid Name

Table 2.4: Token Synonyms

I addition to these a mechanism is needed to classify the tokens to different types.
Table 2.3 contains a list of the tokens used in the grammar.

The number of tokens used in the grammar is a source of confusion as many
are synonyms. Table 2.4 contains the token synonyms as defined in the lexical
grammar, and some examples.

From table 2.4 the following minimal set of tokens needs to be distinguished:

1. con Constructor.

2. var Variable.

3. conop Constant operator.
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4. varop Variable operator.

5. tycon Type constructor.

6. tyvar Type variable.

7. tycls Type class.

8. modid Module identifier.

From the above list and the fact that 1, 5, 7, 8 and 2, 6 belong to different
name spaces [HWA 90, section 1.4] we can conclude that the lexical analyser can
not — in general— detect in which of (1, 5, 7, 8) or (2, 6) an identifier belongs
through semantic analysis (e.g. by looking at the symbol table) as there might be
four different meanings for it. The only case where a semantic analysis will help
is in distinguishing between a type class and a type constructor which are limited
in the same namespace.

From the above we conclude that at any time in the grammar there should be
only one of:

con
tycon tycls
modid

or one of:

var
tyvar

A semantic check needs to be done for tycon, tycls and modid to verify
that they do not start with a bracket (as tCONID is allowed). The same is true for
tyvar with respect to tVARID.

In order to distinguish between tycon and tycls and all the others the
following lexical tie-in is used:

tCONIDCON Returned when the name is a type constructor in that scope.

tCONIDCLS Returned when the name is a type class in that scope.

tCONID Returned in all other cases.

The type of conid returned by the lexical analyser does not force the token
to be interpreted like one of tycon or tycls, but serves as an indicator in cases
where the distinction is relevant. For example the rule for modid is:
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conid : tCONIDCON | tCONIDCLS | tCONID ;
modid : modid ;

As modid is in a different name space than tycls an identifier that represents
a type class shall and will still be interpreted as a module name in the context where
a module name is needed. On the contrary the rules for tycls and tycon are:

tycls : tCONIDCLS;
tycon : tCONIDCON;

In addition to this the grammar needs to be modified so that when a new class
or constructor is defined conid is used instead of tycls.

2.9 Symbol Table

The symbol table is the place where all non reserved identifiers are stored. It is
organised as a hash table of binary trees. From data presented in [LV73], it appears
that a hash table is a viable technique for organising a symbol table if another
mechanism is available for resolving hash collisions.

The first character of the symbol is used as the index into the hash table.
A special opaque data type the stab entry has been defined as the handle in
conjunction with symbols. In addition the data type stab table provides the
opaque data type definition of the symbol table. Access procedures for adding
new symbols, accessing existing symbols, walking through the table using a higher
order function, adding “floating” pseudo-symbols (used by the type checker) and
getting the symbol values are defined.

2.10 Testing

In order to test the parser a way to view the parse tree was needed. Since during
the initial phase of the implementation the tree was a moving target it was decided
to automatically create the program to print the tree. This was not very difficult as
care had been taken during the coding of the tree to write it in such a way that a
mechanical translator based on regular expressions could parse it. Thus the layout
rules were followed scholastically, enumerations were declared immediately before
the structure in which they were used, and complicated syntax was avoided.

A 239 line program written in the Perl programming language [Wal88], was
developed to create a tree printing program out of the tree description. The tree
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printing program recursively walks through the tree displaying the values of the
enumerations and all basic types. Indentation is used to pictorially represent the
tree structure. The value of the enumerations is used to determine which member
of the union to print. From a 470 line description of the tree (tree.h) a 1062 line
file of C code is generated. Clearly the effort put into building this tree printing
tool was worth it. In addition as less programs had to be manually modified each
time the tree was changed, changes for reasons of efficiency or clarity were easier
to make.

A specially built test harness was built that would call the parser and display the
syntax tree. During the testing 11 errors were found in the parser and its associated
modules. Using the reliability index formula given in [Per87, p. 2.5] this gives
an RI of 99.6%. The index is substantially better than the one achieved for the
scanner. The reasons for this are probably:

Yacc found many errors at compile time.

No tricky optimisations were tried (other than the list reversing).

Once the conflicts are removed from the grammar the technique for creating
the tree is straightforward and well understood.
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Chapter 3

Modules and Prelude

3.1 Technical Overview

A commonly used language based on modules is Modula-2 [Wir85]. A description
of its implementation can be found in [Wir77]. The HASKELL report does not
specify how the implementations and the interfaces relate to files and to each other.
It leaves that area of specification to the compilation system [HWA 90, p. 37].
For technical reasons the current design requires every implementation module to
have an associated interface module. Although not required by the system it is I
do not think it is a good practice to have more than one module in a file. In this
aspect the system, resembles most Modula-2 implementations.

The standard prelude resembles the specification for the ANSI C hosted imple-
mentation run-time library [KR88]. As commented in [HJ87, p. 276] the C library
headers and functions may be “built in” to the implementation and only exist in a
virtual sense; library calls can be substituted with inline code. Naive implementa-
tions can of course define the library by using real header files and real functions.
Mutatis mutandis the HASKELL prelude provides a functional specification for the
run-time system. I decided to follow the naive way and use the actual prelude files,
instead of building them into the language. The advantages of this approach are:

1. Ease of implementation. The language automatically acquires a suite of
useful functions and types, once a minimal set of primitives has been imple-
mented.

2. Modularity. The specifications for the utility functions exist outside the
language system. They can be used by both the compiler and the interpreter.
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3. Maintainability. A new version of the HASKELL report is due to appear on
April 1991. Casting the prelude into efficient code at this stage is premature.

The major disadvantage of this approach is loss of efficiency. The system takes
some time to read and parse the prelude every time it is started, and the functions
could probably be implemented more efficiently as “built in” primitives. However
the other two HASKELL implementations that I am aware of (Glasgow and Yale)
are being written entirely in HASKELL [Hud89, p. 405], so this should not make a
very big difference.

An attractive solution offered to the problem of lengthy initialisation is the
undump method. This method is useful for programs that have to bootstrap them-
selves before being ready for user interaction. A virgin copy of the program is
read on the store and starts executing the intialisation code. This typically involves
reading parsing some external files. Once this is completed a complete core image
of the file including its stack, heap and registers is dumped on the disk. Another
program then converts that core image into an executable program in the state of
the other program was before the dump. For example the sc EMACS editor [Sta84]
has a user interface based on hundreds of lines of Lisp code. When the program is
installed it reads all the lisp code and then performs the undump. In an analogous
way the HASKELL front end can read parse and possibly type check the prelude and
dump that state into a new initialised HASKELL executable.

3.2 Lexical Analysis

The first interface to the module system and prelude is presented at the lexical
analysis phase. The lexical analyser merges the prelude and the user specified files
into a single file that is passed as tokens to the parser. The usual interface of the
yywrap() function is used for this purpose. When the end of a file is reached,
the scanner calls the yywrap function to check if there is any more input. The
yywrap function readjusts the current line number, column number and file name
and allows the continuation of input.

3.3 Prelude Initialisation

The prelude is initialised by means of a secondaryfile that contains a specification of
the files comprising the initialisation part of the language. This method decouples
the prelude from the HASKELL system and allows the user to add or remove
intialisation code. A user may elect not to read parts of the prelude (e.g. complex
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numbers) or to substitute parts of the prelude with their own implementation. The
file, called prelude.i is line oriented. Empty lines and lines starting with a
hash character (‘#’) are ignored. The rest of the lines are assumed to contain a
single file name that is loaded by the system before the normal processing of the
user specified files.

At the time of this writing the system automatically includes a great part of the
prelude on startup. The code included is a modified version of the code supplied
with the HASKELL April report. The modifications are mainly the provision of an
interface module for each implementation module (containing all the definitions of
operators (with their fixity) types, classes and instances and all the type signatures),
the removal of fixity declarations from the implementation modules (as they are
given in the interface modules) and the correction of some minor syntax errors.
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Chapter 4

Interpreter

4.1 Technical Overview

The factors one has to consider when choosing between an interpretation or com-
pilation based implementation are given in [aNFV84]:

1. The larger distance in a compilation system between the source text and the
generated code requires higher program complexity.

2. In a compilation based implementation the resulting execution will be more
efficient as more checks are done by the compiler.

3. If the intermediate code used by the interpretation system is reversible then
space savings can be made, by storing only the intermediate code.

The reasons listed above are dated (especially number 3). In addition some
more reasons for choosing an interpreter are:

Faster user interaction.

Incremental system building, rapid prototyping.

Provision of a language with meta-linguistic abilities (e.g. eval).

Portability of implementation.

Easy provision of code manipulation facilities such as source level debug-
ging, profiling etc.

Interpreted language implementations tend to fall into three categories:
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1. Command interpreters such as the UNIX shells sh [Bou86] and csh [Joy86].
An application of the functional programming paradigm in this area is fsh a
functional command interpreter [Don87].

2. Interactive programming environments such as Smalltalk [Gol80], InterLISP
[Tei78], the I.C. Transformation Environment, QuickBASIC [MSQ88] and
muProlog [Nai84].

3. Little (and not so little) specialised languages such as the UNIX text pro-
cessing family of eqn [KC], tbl [Les82], troff [Oss82] and ditroff [Ker], awk
[AKW88], perl [Wal88] etc.

HASKELL is neither a command interpreter nor a specialised language, thus an
interpretive implementation of HASKELL would fall into the second area, that of
interactive programmingenvironments. The need and importance of a user-friendly
functional language environment is stressed in [Lei84] who outlines the experience
of using the InterLISP environment. The various styles of LISP environments are
summarised in [San78].

A formal classification of the various types of writing language for an interpreter
is given in [LPT82, p. 802]. The ways interpretation can be implemented are
categorised in [Kli81] as follows:

CLASS (Classical). The instruction at the address of the program counter is
executed.

DTC (Direct Threaded Code). The instruction pointed by the address of the
program counter is executed.

ITC (Indirect Threaded Code). The instruction pointed by the instruction pointed
by the program counter is executed.

The eval / apply interpreter implemented can be characterised as a DTC interpreter
since the execution pointer is moving on the tree nodes of the lambda tree.

An alternative approachto the benefits of interpretation is throw-away-compilation.
A simple compiler generates code, usually on the fly, which is executed in-situ.
The code is usually never saved. A comparison of these two approaches is made
by [Rob83]. The throw-away compilation approach was particularly attractive for
this project since a compiler was also written. The major implementation problem
is that of portability. The UNIX operating system does not provide a portable way
for the user to directly compile code into memory. A discussion of interpretation
based on an intermediate language can be found in [KKM80].
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The approach elected was a modification of the classical environment based
eval-apply interpreter following the tradition started by [McC60]. The implemen-
tation of such an interpreter in Hope is described in [FH88, pp. 193 – 213] and
in Lisp in [Lic86]. A more general implementation for abstract equations can
be found in[HOS85]. A meta circular version of the interpreter (with one addi-
tional procedure EVLIS which evaluates a list calling EVAL) is given in [JSXX,
p. 631]. The interpreter is based on the SCHEME language and is thus lexically
scoped, exactly as required for HASKELL . That interpreter is then transformed
into a statement oriented language presented in [JSXX, p. 637] suitable for VLSI
implementation. Another description of a Lisp interpreter is given by [Bai85b]. I
argue that my imperative implementation of the eval-apply interpreter resembles
the SECD machine first presented in [Lan63].

In section 4.5 I describe a special compiler written to compile primitives from
a HASKELL / C hybrid language into C / Examples of development and uses of
such little languages are given in [Ben86]. The associative arrays used to store
type information for the primitive compiler are featured in [Ben85]. The compiler
was written in Perl [Wal88] a language containing all the features of awk (awk
programs can be automatically translated into Perl. The suitability of awk for
generating programs is demonstrated in [Wyk86]. Finally the concept of yacc like
actions and the possibility of using a different language for them in a C environment
is presented in [Set84].

4.2 General Description

The interpreter traverses sugared lambda calculus tree evaluating expressions. Spe-
cial code hooks allow for debugging and profiling the performance of HASKELL

programs. An extendable interfacing mechanism merges C and HASKELL types
and objects allowing for easy addition of primitives and libraries. Finally a front
end is provided for user interaction.

4.3 Interpreter Description

4.3.1 Lambda Tree

The parser operates on the lambda tree. The lambda tree which represents sugared
lambda calculus is derived from the syntax tree by a series of transformations done
by Tassos Hadjicocolis, namely pattern matching removal and lambda lifting.

A node of the lambda tree is a C structure with two main fields:
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1. An enumeration type variable containing the type tag of the node.

2. A union containing the various types of nodes.

The tree initially found can contain the following types of nodes:

Function application. The node contains the function that is applied and the
function it is applied to.

Variable. The node contains a symbol table handle pointer. Looking for that
pointer in the correct environment or list of builtin functions will locate the
value for the variable.

Recursive let. The node contains a pointer to a declaration list (variable = expres-
sion pairs) and the main expression.

Conditional. The node contains an expression to be evaluated, an expression to
evaluate if the first expression evaluates to true and the expression to evaluate
if the first expression evaluates to false.

Fatbar. The node contains two expressions and . The semantics of the result
are:

Lambda abstraction. The node contains the lambda variable and the expression
it is to be substituted in.

Error. This node occurs in cases of pattern match errors.

Tuple, Operand, Constructor The node contains the appropriate tag or symbol
table entry.

Integer, Double, Character, String, Nil The node union contains the value of the
item in a field of the appropriate type.

In addition to those nodes three more are added:

Suspension. The node contains a pointer to an expression and the environment
over which it is suspended.

Closure. The node contains a lambda expression and the environment in which its
variables are bound.

Operator. The node contains the arity, function and list of arguments to be passed
to a builtin operator.
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4.3.2 Environment

The environment is stored as a linked list of variable expression pairs. Since all
the strings in the HASKELL system are guaranteed to be stored only ones, when the
value of a variable is searched in the environment, only the pointers and not the
actual names of the variables need be compared.

The circular environment needed for the evaluation of letrecs is constructed on
the fly by creating a dummy environment node. Each (variable, expression) pair
added to the environment as a suspension is made to be evaluated with that node as
an environment. When the last pair has been added to the environment the dummy
node is added as well. In this way a circle is formed in the environment.

4.3.3 Evaluate Code

Evaluation of an expression can be distinguished to the following cases:

Function application. The expression to be evaluated and the current environment
are put into a suspension. The result of applying that suspension to the second
expression is returned.

Variable If the variable is defined in the environment then the expression to which
it is defined is evaluated and returned. If the variable is a builtin primitive
then the arity and the function address for that primitive are fetched from the
symbol table and placed in an newly created operator node. The argument
list of that operator is set to empty.

Letrec. A circular environment is built as explained in section 4.3.2. The result
of evaluating the expression in that new environment is returned.

Conditional. The first expression is evaluated. If the result is true then the result
of evaluating the second expression is returned else the result of evaluating
the third one.

Fatbar. If evaluating the first expression returns bottom then bottom is returned. 1

If evaluating the first expression does not return a fail node then the that result
is returned, else the result of evaluating the second expression is returned.

Lambda. A closure node of the expression and the current environment is returned.

1This is to check if you were reading carefully. The sentence before the footnote is not to be taken
seriously.
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Suspension. The result of evaluating the suspension in the environment specified
in the suspension is returned.

All other nodes. The expression is returned.

4.3.4 Apply Code

The code for evaluating function application is much simpler. There are only two
cases:

1. The function to be applied is a closure. Then a new environment is created
mapping the second expression to the lambda variable of the closure. The
result of evaluating the closure lambda body in that environment is returned.

2. The function to be applied is an operator. The second expression is added to
the list of arguments of the operator. If the arity of the operator is 1 then a
C function defined in the operator is called with the list of arguments as an
argument. Else A new operator note is created with arity one less than the
current operator node.

4.4 Primitive library

In order to minimise the amount of coding I decided to implement the minimum
number of primitives needed to provide all the features of HASKELL . Fortunately,
this was also a goal of the HASKELL committee. (The reason the HASKELL commit-
tee provided a minimal number of primitives was in order provide a clean language
definition). Thus the PreludeBuiltin part of the HASKELL prelude contains
such a minimal set of primitives.

A brief description of the primitives implemented is contained in the following
sections.

37



4.4.1 Type Conversion

primCharToInt :: Char Int
Converts a character into a fixed precision integer. The result will always be
positive.

primIntToChar :: Int Char
Converts a fixed precision integer into a character. Integers with ordinal
values that are the same as the characters of the machine character set are
represented as those characters. Other integers are truncated in an imple-
mentation defined way. Usually the result corresponds to a binary and of a
mask of ones, wide as the character representation and the integer.

primIntToInteger :: Int Integer
Converts a fixed precision integer into a multiple precision integer.

primIntegerToInt :: Integer Int
Convert a multiple precision integer into a fixed precision integer. If the
value of the multiple precision integer is greater or less than the maximum or
minimum fixed precision integer representable value the result is undefined.

4.4.2 Fixed Precision Integers

primMinInt :: Int
Returns the maximum fixed precision integer that can be represented on the
system. The value is -2147483648 for 32 bit machines.

primMaxInt :: Int
Returns the minimum fixed precision integer that can be represented on the
system. The value is 2147483647 for 32 bit machines.

primEqInt :: Int Int Bool
Compares two integers for equality. Returns true if they are equal, false if
they are not equal.

primLeInt :: Int Int Bool
Returns true if the first integer is less than or equal to the second one, false
if the second is greater than the first one.

primPlusInt :: Int Int Int
Returns the result of adding the two integers passed. If an overflow occurs
the result is implementation dependent.
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primMulInt :: Int Int Int
Returns the result of multiplying the two integers passed. If an overflow
occurs the result is implementation dependent.

primNegInt :: Int Int
Returns the negated value of the integer passed. If an overflow occurs the
result is implementation dependent.

primDivRemInt :: Int Int (Int,Int)
Returns a tuple containing the quotient and the remainder resulting from
dividing first integer passed by the second. A runtime error will occur if the
second integer is zero.

4.4.3 Multiple Precision Integers

primEqInt :: Integer Integer Bool
Compares two multiple precision integers for equality. Returns true if they
are equal, false if they are not equal.

primLeInt :: Integer Integer Bool
Returns true if the first integer is less than or equal to the second one, false
if the second is greater than the first one.

primPlusInt :: Integer Integer Integer
Returns the result of adding the two integers passed.

primMulInt :: Integer Integer Integer
Returns the result of multiplying the two integers passed.

primNegInt :: Integer Integer
Returns the negated value of the integer passed.

primDivRemInt :: Integer Integer (Integer,Integer)
Returns a tuple containing the quotient and the remainder resulting from di-
viding first integer passed by the second. A runtime error will occur if the
second integer is zero.

4.4.4 Single Precision Floating Point

“The practical scientist is trying to solve tomorrow’s problem
with yesterday’s computer; the computer scientist, we think, often
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has it the other way round.”
W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetter-
ling commenting on C ’s half hearted support of single precision
arithmetic in Numerical Recipes in C [PFTV88].

The primitives in this section are written in the C programming language
using the standard C library. Traditionally C [KR78] did all single precision
arithmetic by converting the values into double precision doing the operation
and then converting the result back to single precision before storing. The
reason for this is allegedly the difficulty of switching between the two modes
on the PDP-11 computer. ANSI C [KR88] corrected this deficiency by
specifying that single precision arithmetic is done in single precision. It
does not however provide a single precision mathematical library. For this
reason some operations in the following section are performed in single
precision and some in double.

primFloatRadix :: Integer
Returns the exponent radix of the system single precision floating point
representation. This value is 2 for IEEE arithmetic implementations.

primFloatDigits :: Int
Returns the maximum number of floating point digits that can be represented
in the system single precision floating point representation. This value is 6
for IEEE arithmetic implementations.

primFloatMinExp :: Int
Returns the exponent of the smallest representable single precision floating
point number. This number will be -37 for IEEE arithmetic implementations.

primFloatMaxExp :: Int
Returns the exponent of the highest representable single precision floating
point number. This number will be 38 for IEEE arithmetic implementations.

primDecodeFloat :: Float (Integer,Int)
Given a single precision floating point number , returns a tuple such
that if is the floating point radix . Also if is the number returned
by primFloatDigits and will be zero or 1 will hold.

primEncodeFloat :: Integer Int Float
Given a multiple precision integer and a fixed precision integer it
primEncodeFloat returns where is the single precision floating point
radix.
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primEqFloat :: Float Float Bool
Returns true if the two single precision floating point numbers passed are
exactly equal.

primLeFloat :: Float Float Bool
Returns true if the first single precision floating point number passed is less
or equal to the second one.

primPlusFloat :: Float Float Float
Returns the result of adding the two single precision floating point numbers
passed. The operation is performed in single precision arithmetic. If an
overflow occurs the result is implementation dependent.

primMulFloat :: Float Float Float
Returns the result of multiplying the two single precision floating point
numbers passed. The operation is performed in single precision arithmetic.
If an overflow occurs the result is implementation dependent.

primDivFloat :: Float Float Float
Returns the result of dividing the first single precision floating point number
given, by the second one. The operation is performed in single precision
arithmetic. If an overflow occurs the result is implementation dependent.

primNegFloat :: Float Float
Returns the negated value of the single precision floating point number
passed.

primPiFloat :: Float
Returns the single precision approximation to the geometric constant .

primExpFloat :: Float Float
Given a single precision floating point number the result of the exponential
function is returned. The operation is performed in double precision
arithmetic.

primLogFloat :: Float Float
Returns the natural logarithm of the single precision floating point number
passed. The operation is performed in double precision arithmetic.

primSqrtFloat :: Float Float
Returns the square root of the single precision floating point number passed.
The operation is performed in double precision arithmetic.
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primSinFloat :: Float Float
Returns the sine of the single precision floating point number passed. The
operation is performed in double precision arithmetic.

primCosFloat :: Float Float
Returns the cosine of the single precision floating point number passed. The
operation is performed in double precision arithmetic.

primTanFloat :: Float Float
Returns the tangent of the single precision floating point number passed. The
operation is performed in double precision arithmetic.

primAsinFloat :: Float Float
Returns the arc sine of the single precision floating point number passed.
The operation is performed in double precision arithmetic.

primAcosFloat :: Float Float
Returns the arc cosine of the single precision floating point number passed.
The operation is performed in double precision arithmetic.

primAtanFloat :: Float Float
Returns the arc tangent of the single precision floating point number passed.
The operation is performed in double precision arithmetic.

primSinhFloat :: Float Float
Returns the hyperbolic sine of the single precision floating point number
passed. The operation is performed in double precision arithmetic.

primCoshFloat :: Float Float
Returns the hyperbolic cosine of the single precision floating point number
passed. The operation is performed in double precision arithmetic.

primTanhFloat :: Float Float
Returns the hyperbolic tangent of the single precision floating point number
passed. The operation is performed in double precision arithmetic.

primAsinhFloat :: Float Float
Returns the inverse hyperbolic sine of the single precision floating point
number passed. The operation is performed in double precision arithmetic.

primAcoshFloat :: Float Float
Returns the inverse hyperbolic cosine of the single precision floating point
number passed. The operation is performed in double precision arithmetic.
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primAtanhFloat :: Float Float
Returns the inverse hyperbolic tangent of the single precision floating point
number passed. The operation is performed in double precision arithmetic.

4.4.5 Double Precision Floating Point

All primitives in this section are performed in double precision arithmetic.

primDoubleRadix :: Integer
Returns the exponent radix of the system double precision floating point
representation. This value is 2 for IEEE arithmetic implementations.

primDoubleDigits :: Int
Returns the maximum number of floating point digits that can be represented
in the system double precision floating point representation. This value is
15 for IEEE arithmetic implementations.

primDoubleMinExp :: Int
Returns the exponent of the smallest representable double precision floating
point number. This number will be -307 for IEEE arithmetic implementa-
tions.

primDoubleMaxExp :: Int
Returns the exponent of the highest representable double precision floating
point number. This numberwill be 308 for IEEE arithmetic implementations.

primDecodeDouble :: Double (Integer,Int)
Given a double precision floating point number , returns a tuple such
that if is the floating point radix . Also if is the number returned
by primDoubleDigits and will be zero or 1 will hold.

primEncodeDouble :: Integer Int Double
Given a multiple precision integer and a fixed precision integer it
primEncodeDouble returns where is the double precision floating
point radix.

primEqDouble :: Double Double Bool
Returns true if the two double precision floating point numbers passed are
exactly equal.

primLeDouble :: Double Double Bool
Returns true if the first double precision floating point number passed is less
or equal to the second one.
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primPlusDouble :: Double Double Double
Returns the result of adding the two double precision floating point numbers
passed. If an overflow occurs the result is implementation dependent.

primMulDouble :: Double Double Double
Returns the result of multiplying the two double precision floating point
numbers passed. If an overflow occurs the result is implementation depen-
dent.

primDivDouble :: Double Double Double
Returns the result of dividing the first double precision floating point number
given, by the second one. If an overflow occurs the result is implementation
dependent.

primNegDouble :: Double Double
Returns the negated value of the double precision floating point number
passed.

primPiDouble :: Double
Returns the double precision approximation to the geometric constant .

primExpDouble :: Double Double
Given a double precision floating point number the result of the exponential
function is returned.

primLogDouble :: Double Double
Returns the natural logarithm of the double precision floating point number
passed.

primSqrtDouble :: Double Double
Returns the square root of the double precision floating point number passed.

primSinDouble :: Double Double
Returns the sine of the double precision floating point number passed.

primCosDouble :: Double Double
Returns the cosine of the double precision floating point number passed.

primTanDouble :: Double Double
Returns the tangent of the double precision floating point number passed.

primAsinDouble :: Double Double
Returns the arc sine of the double precision floating point number passed.
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primAcosDouble :: Double Double
Returns the arc cosine of the double precision floating point number passed.

primAtanDouble :: Double Double
Returns the arc tangent of the double precision floating point number passed.

primSinhDouble :: Double Double
Returns the hyperbolic sine of the double precision floating point number
passed.

primCoshDouble :: Double Double
Returns the hyperbolic cosine of the double precision floating point number
passed.

primTanhDouble :: Double Double
Returns the hyperbolic tangent of the double precision floating point number
passed.

primAsinhDouble :: Double Double
Returns the inverse hyperbolic sine of the double precision floating point
number passed.

primAcoshDouble :: Double Double
Returns the inverse hyperbolic cosine of the double precision floating point
number passed.

primAtanhDouble :: Double Double
Returns the inverse hyperbolic tangent of the double precision floating point
number passed.
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4.5 Primitive Description Compiler

All primitives have some common characteristics. Each primitive needs to:

isolate its arguments from the linked list passed,

evaluate the arguments into weak head normal form,

assert that the arguments passed are of the correct type (this is done in the
debug version of the program to flag potential programmer errors),

create a new node of the appropriate type,

fill the appropriate field of the node with the result and

return that node.

In order to avoid this repetitiveness I implemented a special language for
describing primitives. This small language providing the interface between C and
HASKELL contains features of both languages. It also uses some conventions such
as the $ pseudo-variable found in yacc [Joh75]. The primitive description file can
contain comments starting with the # character and blank lines. Code between
% and % pairs is literally included in the resulting C output. Its purpose is to

allow for the specification of include files, global variables, data structures and
procedures.

The user needs to specify a map between the HASKELL types, their C represen-
tations, the C enumeration constants used to represent them in an expression and
the union field they belong to. Each item of the map starts on a new line with a
%type keyword. Map elements are separated by s double colon. For example the
map for fixed precision integer values is the following:

%type Int : int : ex_int : i

This means that a HASKELL value of type Int is stored in the structure union field
u.i with the structure kind field set to ex int. A C variable of type int can
store such a value.

After the map is given the user can define the primitives. Primitives start
on a line starting with the primitive keyword, followed by the name of the
HASKELL primitive and its HASKELL type signature. A C block follows the primitive
declaration. Within the block the pseudo-variables $1, $2 etc. are substituted by
the appropriate union fields of the real arguments, while the pseudo-variable $$
stands for the correctly initialised result node. The definition for the primEqInt
primitive might look as follows:
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primitive primEqInt :: Int -> Int -> Bool
{

$$ = ($1 == $2);
}

This is about 8 lines shorter and a lot clearer than the corresponding C code.
This meta-compiler is implemented in the PERL programming language. The

associative arrays, variable substitution within strings and extended regular expres-
sions of PERL significantly eased the implementation task.
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Chapter 5

Code Generation

The purpose of this chapter is to describe the process that yields executable machine
code, starting from abstract G code. The G code is produced by a series of
transformations by Tassos Hadjicocolis ( pattern matching removal, lambda lifting,
supercombinators, G ).

5.1 Technical Overview

The main reference for code generation from the G machine is [Jon87, 293–366].
Other abstract machines fo evaluating declarative languages are discussed in [JJ89]
and [War83]. The Amber machine [Car85] is an example of a machine for direct
implementation of functional languages. SK combinators and details on removing
variable references are presented in [Tur79]. The need for highly specific abstract
machine instructions to aid the code generation process is presented in [FH82]. The
paper also contains ways for exploiting various machine specific pointer operations
in abstract machines. Some of the advice given can be found in the 68000 code
generator. A discussion on code generation for Lisp, assembler macros and various
optimisations can be found in [GH81]. Assembler specific optimisations are given
in [Han83].

Systematic optimisation of assembly code is done by means of peephole opti-
misers [ASU85, p. 554]. Some simple optimisations relevant to the code produced
by the G translation process are given in [Jon87, p. 328]. Devidson [Dav84]
generalises the technique of a simulated stack into a simulated cache. A more
general discussion on constructing a peephole optimiser is in [Lam81].

The idea for a generic machine description file (and the file name suffix .md
was take from the project GNU C compiler [Sta89]. The C calling sequence for
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interfacing C with assembly language is presented and discussed in [JR81].

5.2 Machine Description Meta-generator

The problem of translating G into assembly code can be generalised by using
the concept of a machine description file. That file contains a mapping from
G instructions to a specific machine instruction sequences. A separate program,
the machine description compiler compiles the machine description file into an
executable program that converts G into assembly. This approach has the following
advantages:

The developer need only focus on the assembly mapping of the G instructions
when writing the machine description file. Tasks such as the lexical analysis
and parsing of the G instructions need to bother him or her.

A machine description file is smaller and easier to write than a complete
translator. Thus it is easy to create a number of machine description files
easing the porting of the system.

Changing the format of the G code (e.g. converting it into a binary stream
for efficiency reasons or even directly connecting the two processes) will not
invalidate the machine description files and the effort put into them. Simply
a new machine description file translator needs to be written.

The format of the machine description file was designed to be the following:

Comment lines are blank lines, or lines containing a hash character.

Header inclusion starts with the symbol %% . All code from that point up to the
matching % is copied verbatim to the assembly file. The purpose of this
section is to include assembler constant definitions, jump tables, macros etc.

Assembly comment definition is given by the sequence %%comment. The char-
acter following the comment word is taken to be the assembler comment
character. When code for the translator is generated all comments in the as-
sembly file will be removed. This allows the user to put arbitrary comments
inside assembly sequences without affecting the efficiency of the translation
process (one should remember that a particular instruction sequence can be
repeated tens of times on the output). The comment facility of the definition
language is not used, because it is quite probable that the comment character
of the definition language (the hash) will serve some other purpose in some
assembler.
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G instruction definitions are introducedby the%keyword sequencewherekeyword
is the name of a G instructions. An optional set of parameters can be given.
The text starting at the following line up to the first % will be generated
for that instruction by the translator. Any parameters will be substituted at
translation time with the actual parameters following the G instruction. Any
local assembly comments are removed at compile time.

The “machine description” to “G to assembly translator”, compiler is imple-
mented as a script written in Perl. Initially it used to output lex code. This took
excessively long to compile and the scanners produced were very slow. A speedup
to a factor of 7 was achieved by replacing the lex output by a C program based
on a perfectly hashed function. An option exists to allow the translator to put into
the assembly comments indicating the G file and line number that generated each
assembly sequence. This is to aid the debugging process.

5.3 Machine Models

A full machine description file for the Motorola 68020 processor has been written.
and the machine model for the Intel iAPX386 has been designed.

5.3.1 Motorola 68020

Registers are used on the 68020 [TS86] as follows:

a7 Machine user stack pointer.

a6 C frame pointer

a5 G stack pointer. Always points to the top of stack element.

a4 G heap pointer. Always points to the first free cell.

d0 C function result return.

All other registers can be used for temporary values.

5.3.2 Intel iAPX386

Registers are used on the iAPX386 [SJ87] as follows:

ESP Machine user stack pointer.

50



EBP C frame pointer

ESI G stack pointer. Always points to the top of stack element.

EDI G heap pointer. Always points to the first free cell.

EAX C function result return.

EBX Secondary heap indexing.

ECX Temporary.

EDX Temporary.

The direction flag must always be set, as string instructions will be used for creating
heap cells.

5.4 G implementation

Most of the instruction sequences follow the general pattern presented in [Jon87].
Unwind and eval are handled through indirect indexed jumps on tables containing
the addresses of code for the relevant cell contents. The indexed register indirect
with offset addressing mode has been extensively used to compute addresses on the
heap in one CPU instruction. For example in the unwind implementation putting
the index of the net element into the appropriate index of the vertebra (indexed by
d1) is accomplished by:

movl a5@(4,d1:l:4),a2 | Get vertebra
movl a2@(8),a5@(0,d1:l:4) | Put it on the stack

Nodes are built on the hap using the postincrement addressing mode. The
allocG instructionuses the 68000dbeq instruction to combine the decrementing
of the index, testing and jumping in one instruction. This makes heap allocations
very fast.

A number of G primitives have been implemented in assembly. Some more
complicated such as unpack sum and unpack prod have been written as re-
cursive functions in C . A C structure and enumeration type have been written to
reflect the underlying assembly language organisation. The C function is passed
the arguments on the C stack (including the heap pointer). It then assigns the heap
pointer to a global variable. C functions that build objects on the heap increment
the heap pointer (the heap pointer is declared as a point to a structure of type cell
and thus is automatically incremented by the correct amount.) At the end of the
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computation the glue C function passes the new heap pointer back to the assembly
caller. The assembly caller assigns the updated heap pointer to the register variable
containing it.

5.5 Cell Implementation

Cells are implemented in the boxed way [Jon87, p. 335] The main reason for this is
portability. Unboxed representationmixed the pointer bit with the actual value. The
resulting code is non-portable. Since some of the runtime environment is written
in C (approximately 20%) it was decided to opt for the boxed representation.

Each cell contains a tag field. The tag field is a number that represents how
the rest of the cell is to be interpreted. It occupies one 32 bit machine word.
Following the tag field are two other fields which contain various values depending
on the cell type. Constructors are represented by a linked list of CONSTR cells.
Each CONSTR cell contains a pointer to the next cell and a pointer to its element.
Although this implementation is not the most efficient possible (see [JSXX, p. 635]
for alternative representation) it easy very general and clean.

In the design of [Jon87] each functions is represented by a different tag and
thus at the time of evaluating it its arity can be deduced by its tag. This scheme,
although very generic is very difficult to implement in a one pass translator. A
different reason was used. When a globstart instruction is given the arity of
the function is written in statically allocated memory and a pointer is assigned to
that address. When the a pushglobal instruction is encountered an assembly
instruction is emitted to fetch the arity from that address (using the label which is
generated in a known way) and place it in the cell.

5.6 Additional G Instructions

Two additional G instruction beyond those specified in [Jon87] have been added.
Pushvglobal and vglobstart represent functions with a variable number of
arguments. The only such functions are the internally used and generated pack
functions. The instructions are implemented as the corresponding fixed number of
argument instructions, only the arity is not put in the cell for pushvglobal and
is not put into memory for vglobstart. These functions are also represented by
a different tag. When such an instruction is evaluated or unwound, not check for
the number of arguments is made. By definition the correct number of arguments
will be on the stack.
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5.7 Runtime Environment

An executable HASKELL program needs to be linked with a runtime library. That
library contains the internal and HASKELL primitives, runtime error reporting func-
tions and startup code. The startup code allocates space for the stack and a heap
into a big structure containing two arrays (which are used by the C functions to
address the G memory space) and then calls the G startup code passing the address
of that structure as an argument. The G startup code initialises the heap and G
stack pointing registers based on that argument (both start on the same point since
they grow on opposite directions) and starts evaluating code on the stack.
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Chapter 6

System Development Issues

A number of techniques were used during the implementation of this system in
order to automate the work,

6.1 Error message management

Error messages are one of the most important aspects of a user interface. Cryptic
errors will confuse a novice user, while overly verbose errors can hide valuable
details under their volume. Good error messages are very difficult to create as
indicated in [Bro82]. An approach often taken is to index the errors by a code.
Each error is printed as a brief message accomanied with the index number. In
the documentation, and increasingly on-line, there is a list of errors sorted by their
index numbers together with more detailed information. The information provided
should give possible reasons for the error occuring and suggested recovery actions
[BC89, p. 309].

The features described above present a serious logistic problem. Errors have
to be numbered in a coherent way. Every time a new error is added the indices and
the documentation have to be updated. If on-line help is available then that needs
to be kept in sync as well. An attractive solution to this problem is presented in
[Dou90].

Errors are kept in a database file. The cause of the error and the proposed
solutions are part of the source code. A special program scans the source code
and automatically recreates the database. The map between the database and the
actual error message is represented by the file name and line number in which the
error was called. Special macros are used to take advantage of the C preprocessor
ability to substitute the file name and line number for the indentifiers FILE and
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LINE .
The approach described was modified to acter for the complexity of the

HASKELL system. Four classes of errors are distinguished:

Fatal errors These are non-recoverable errors. The system terminates when such an error
occurs.

Errors Recoverable errors. The system attempts to recover from the error and
continue the opration.

Warnings Diagnostic information. These can indicate something of interest o the user
(such as a portability problem) which will not affect the operation of the
system.

Runtime errors These are non-recoverable errors found by the runtime system when exe-
cuting G code. They result in an error message together with the offending
address being printed and a temination with a core dump.

Errors are numbered in increments of 1000 for each class. The Perl [Wal88]
program errordb.pl scans all the source code and creates three files.

Errors.db is a file containing the file, line number and error number of each
error. It is used by the error reporting functions for associate an error number
with a specific error.

Errors.txt contains a sorted list of all errors, their brief messages (suitably
parameterised in order to hide the C printf output codes), possible causes
and suggested actions. The file is formated in a uniform and visually attrac-
tive way using the format facility of Perl. This file is suitable for printing
on a line printer or fo display on a glass tty terminal. It is used by the help
system of the interpreter to provide additional information when an error is
encountered.

Errors.tex] is a file containing the error messages with suitable commands
for printing by the LATEX[Lam85] document preparation system. This file
was used in the production of this report.

When an error is called one of the parameters is its CONTEXTwhich is replaced
using a set of macros by the file name and line number in which the error is used.
The error reporting procedure scanserrors.db to find the error number assigned
by errordb.pl to that error and prints it out otgether with the brief message
and possible other arguments. (The variable number of arguments facility of C
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is used to create the error reporting function as a variadic printf like funciton.
This allows for informative error messages to be printed in an easy and convenient
way.)
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Chapter 7

Performance

In order to evaluate the performance of the front-end its operation was profiled
using the profiler [Spi89].

Table 7.1 shows the result of scanning, parsing and building the syntax tree
of the HASKELL prelude. The program was run on a Compaq Deskpro 386/20e
running MS-DOS 3.30 with speed reduced from 20MHz to 8MHz to increase the
number of hits and consequently the accuracy of the results. Disk caching was
disabled to reflect the situation where the program is executed for the first time.
Entries with less than 2The program was compiled using Microsoft C 5.1 under
the large model with optimisations turned off (the compiler crashes on some of the
code when optimisations are enabled).

The profile reveals several interesting things. The dominant factor of the front
end is the parsing and construction of the parse tree (it is done within the yyparse
function. Almost the same percentage of time is spent in the operating system and
the system ROM which means that the program has a significant I/O component.
One should take into account that the I/O subsystem was proportionally faster than
that of a typical machine, since the CPU was slowed down. A significant I/O
component often indicates an efficient program. Here I believe that this is the case.

An unexpected result of the profile was the high percentage of time spent in
the memcpy routine. Searching though the code I found that the only place where
the routine was called was within the fio library. The purpose of this library is to
minimise character copying, so this result was at least ironical. Closer examination
of the code revealed that as a result of the maximum line length allowed by fio, the
average line length of the prelude and the buffer size chosen approximately half of
the characters would get copied. The reason for this is subtle:

Fio specifies that a line can be up to 4096 characters. A buffer twice that size
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Area Time %

yyparse 19.55
DOS 15.04

gettoken 12.78
memcpy 12.03

chkstk 6.02
read 5.26

fmalloc 4.51
SYSTEM ROM 4.51

stab findadd 3.76
amalloc 3.76
strncmp 2.26

strcmp 2.26
eatwhite 2.26

Table 7.1: Front end profile

was chosen in order to implement a double buffering scheme. Whenever there
are less than 4096 characters in the buffer and a new line is requested fio needs
to copy the remaining characters to the beginning of the buffer and fill the rest
in. As the average prelude line is a lot smaller that 4096 characters (typically less
than 80), whenever half of the buffer was read, the other half was copied to the
beginning. Hence the large percentage spent copying characters. The memcpy
time can be made arbitrarily small by increasing the size of the buffer or decreasing
the maximum allowed line length. Each such doubling or halving will halve the
time spent copying.

The time spent in the lexical analyser engine gettoken is very respectable
compared to the rest. it indicates a sound design and implementation.

The time spent allocating memory is relatively low, as expected given the care
taken to avoid allocation of small items.

Surprisingly little time was spent in the string comparison routine given the fact
that it is called for every keyword. This dissuaded me from a plan of optimising
the keyword recognition scheme.
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Chapter 8

Conclusions

This project has demonstrated that the HASKELL language can be implemented. The
whole language is scanned and parsed and most of its constructs can be intepreted
and transformed into efficient machine language.

A significant and ironic aspect of the project is the extensive use of little
languages. I do not believe that the 12700 lines of code could have been produced
with the reliability achieved were there not for the additional level of abstraction
provided by those new languages introduced. HASKELL is a big language. Its many
features make it difficult to analyse, parse and reason about. While writing test
programs I often found myself wondering what a construct would mean. Having
achieved most of the goals set at the beginning of the project I am not convinced that
HASKELL provides the linguistic vehicle needed by the functional programming
community.
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Appendix B

Error Messages

3001 Error count exceeds number; stoping

Reason Too many errors were output.

Action Correct some of the errors and retry.

3002 Out of memory (malloc number)

Reason All the memory resources of the system were exhausted.

Action Try to run the system with fewer processes, or increase the swap
area. Alternatively simplify the program.

3003 Out of memory (realloc number)

Reason All the memory resources of the system were exhausted.

Action Try to run the system with fewer processes, or increase the swap
area. Alternatively simplify the program.

2001 Undeclared variable (string)

Reason An undeclared variable was used in an expression.

Action Make sure that all variables used are declared.

2002 Pattern match error

62



Reason A pattern matching failed completely either for different expres-
sions, or cases.

Action Make sure that there is a pattern specification for every different
pattern that can exist at runtime.

2003 Single digit expected (number)

Reason An invalid fixity declaration was found.

Action Fixity declarations should consist of a single digit in the range from
0 to 9.

2004 Missing constructors in data declaration

Reason No constructors were given in a data declaration of an implemen-
tation module.

Action Ensure that the simple type is followed by an equal sign and a con-
structor list. Constructors can only be ommited in interface modules.

2005 Invalid unary operator‘string’ in expression

Reason A unaryoperatorother than unary minus was found in an expression.

Action Haskell only allows ‘-’ to be used as a unary operator. Ensure
brackets are used correctly to indicate precedence.

2006 Invalid successor pattern

Reason A successor pattern composed by invalid elements was found.

Action Ensure that the pattern is composed by a variable to which an integer
is added. Check that precedence rules guarantee the correct binding.

2007 Invalid unary operator‘string’ in pattern

Reason A unary operator other than unary minus was found in a pattern.

Action Haskell only allows ‘-’ to be used as a unary operator. Ensure
brackets are used correctly to indicate precedence.
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2008 Syntax error

Reason A syntactical error was found in the program source.

Action Make sure that the program follows the syntax rules of Haskell.
Check for misspellings. Check the input against the precedence rules.

2009 Invalid interface import

Reason An invalid import declaration was found in an interface module.

Action Ensure that no “hiding” declaration has been used and that and
explicit import list has been given.

2010 Invalid interface declaration

Reason An invalid variable or class declaration was found in an interface
module.

Action Ensure that no “default” declaration has been used and that any
variable or class instance declarations only consist of type signatures.

3004 End of file in line comment

Reason The file ended while processing a single line comment.

Action Make sure that the line ends with a newline.

2011 Floating point number overflow

Reason A floating point number with a value higher or lower than the maxi-
mum or minimum representable value on this system was encountered.

Action Make sure that the exponent is within the valid range and that no
other numbers follow it.

2012 Invalid backquote operator

Reason The operator formed using backquotes was not valid.
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Action Ensure that the operator is enclosed within backquotes and that only
valid alphanumeric characters are used. No spaces are allowed within
the backquotes.

2013 Close bracket missing in variable or constructor

Reason An attempt was made to use a symbolic operator as a curried variable
or constructor by encolosing it in parentheses. No closing parenthesis
was found.

Action Ensure that the symbols are enclosed within parentheses and that
only valid symbol characters are used. No spaces are allowed within
the parentheses.

2014 Invalid decimal escape (number)

Reason An illegal decimal escape sequence was found. The value of the
resulting character is higher than the maximum allowed.

Action Give an decimal number from 0 to 255 and make sure that a se-
quence of less than three decimal digits is not followed by other digits
producing a spurious result.

2015 Invalid octal escape (octal number)

Reason An illegal octal escape sequence was found. The value of the
resulting character is higher than the maximum allowed or no octal
digits were following the ø.

Action Give an octal number from 0 to 377 and make sure that a sequence
of less than three octal digits is not followed by other digits producing
a spurious result.

2016 Invalid hexadecimal escape (hexadecimal number)

Reason An illegal hexadecimal escape sequence was found. The value
of the resulting character is higher than the maximum allowed or no
hexadecimal digits were following the
x sequence.
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Action Give an hexadecimal number from 0 to ff and make sure that a
sequence of hexadecimal digits is not followed by other hexadecimal
digits producing a spurious result.

2017 Invalid ASCII control escape (character)

Reason An ASCII control escape sequence with an invalid control character
was detected.

Action Ensure the an uppercase character from A to Z

2018 Invalid backslash escape (string)

Reason An unknown backslash escape was found.

Action Make sure that the backslash escape is valid. Valid backslash escapes
are a backslash followed by one of a b f n r t v " ’ & or the name of
an ASCII control, hat followed by an uppercase letter, x followed by a
hexadecimal number or an optional o followed by an octal number.

2019 Empty character

Reason A character with no contents was found.

Action Make sure that there is exactly one character between the single
quote marks. A character consisting of a single quote mark should be
given as ’’́.

2020 Invalid null character constant

Reason The null character escape & is only meaningful inside string con-
stants.

Action Either denote a string constant using double quotes or change the
escape sequence to a valid one.

2021 Invalid characterconstant (’character’ 0octal number number 0xhexadecimal
number)

Reason An invalid character constant was given. The constant is not in the
ASCII range 32-126.
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Action Make sure that the character is withing the ASCII range 32-126. All
other characters should be given by backslash escapes.

2022 Possibly unterminated character constant

2023 Newline in string

Reason A newline was detected within a string. A string was not terminated
on the same line where it started.

Action Make sure that the string terminates on the same line it starts. To
include a newline in a string use the
n escape sequence.

3005 End of file in string

Reason The file ended while reading a string.

Action Make sure that the string ends with a double quote.

2024 Badly formed string gap

Reason A string gap was badly formed.

Action Make sure that the string gap is composed by a backslash, possibly
followed by spaces or tabs, followed by a single newline, possibly
followed by another series of spaces or tabs, followed by a backslash.

2025 Invalid character in string (’character’ 0octal number number 0xhexadecimal
number)

Reason A non printable character was found within a string.

Action Make sure that the string only contains ASCII characters between
32 and 126. All other characters should be given as backslash escapes.

3006 End of file in comment

Reason The file ended while processing a block comment.
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Action Make sure that every comment ends with a minus brace and that no
nested comments have been left open.

2026 Bracket missmatch inside qualifier

Reason A bracket mismatch has been detected while parsing a list compre-
hension.

Action Make sure that the round, square and curly brackets in the list com-
prehension are correctly balanced. Brackets of different kinds should
never overlap.

3007 Qualifier ring buffer full

Reason Too many lexical tokens while scanning ahead a qualifier were
found.

Action Make sure that the square brackets around the list comprehension are
correctly balanced. If the expression is very complex try simplifying
it.

3008 Premature EOF

Reason End of file was reached while scanning a list comprehension.

Action Make sure that the square brackets around the list comprehension
are correctly balanced.

3009 Qualifier ring buffer full

Reason Too many lexical tokens while scanning ahead a qualifier were
found.

Action Make sure that the square brackets around the list comprehension are
correctly balanced. If the expression is very complex try simplifying
it.

3010 Token ring buffer full

Reason

68



Action Too many lexical tokens were pushed by the layout rules. Try
simplifying the layout of the source.

3011 Indentation stack overflow

Reason

Action Too many lexical tokens were pushed by the layout rules. Try
simplifying the layout of the source or use some explicit curly brackets.

3012 Indentation stack underflow

Reason

Action Tried to add more implicit close braces than implicit open bracess
had been addedusing the layout rules. Curly brackets that have been
opened by the user must be explicitly closed.

3013 End of file in line comment

Reason The file ended while processing a single line comment.

Action Make sure that the line ends with a newline.

3014 Unable to open string: string

Reason The input file specified could not be opened for reading.

Action Make sure that the correct filename and extension were given and
that the file has appropriate permissions.
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Appendix C

A General Critique of the Haskell
Syntax

C.1 Introduction

The syntactic description of Haskell has a number of problems. They can be
classified into three different categories of severity. I will analyse these categories
from the least problematic to the most troublesome. While all of the problems can
in theory be solved, I believe that the implementation of the language will suffer
death by a thousand cuts.

C.1.1 Stylistic problems

The easiest problems to solve are the ones associated with the way the language
is presented. The syntax given in appendix B of the language specification is
supposed to follow some notational conventions which are given in section 1 of
the appendix. However in the presentation of the grammar in section 4 a number
of additional description mechanisms are used. These are:

Bracketed comments on the right of the rules. The comments specify any-
thing from the number of times a construct may repeat to the type an operand
is allowed to have. I stress that the comments do not have just seman-
tic meaning. A number of them are used to distinguish between different
syntactic choices.

The ellipsis construct is introduced to signify repetition.

Some productions are subsets of other productions.
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While most of these problems can be dealt with they show a certain lack of
experience or care from the persons who designed the language. They furthermore
demonstrate that the grammar is difficult to describe in a formal way and thus
probably also difficult for people to understand, implement and use.

C.1.2 Lexical ties

There is no clear distinction between the lexical and grammatical elements of the
language definition. The same categories of lexical elements are used as different
types of tokens by the grammar. Thus the lexical analyser needs to have a number
of special hooks to change its behaviour according to the context of the syntax.
The cases identified up to now are:

Constant identifiers can serve as constant identifiers, as class specifiers and
as constant type specifiers.

Variable identifiers can serve as variable identifiers and as variable type
identifiers.

Operands can change their precedence and associativity dynamically.

Layout is significant. Although one might get the impression than the lexical
analyser only needs to check white space at the beginning of each line to
implement the layout rules a closer examination of the rule reveals that layout
can begin at any point within a line.

Most of the problems described above can be found in other languages. C
requires a single lexical tie for type definitions [KR78] , awk [AKW79] doesn’t
require statement terminators (one form of the Haskell layout rule), Ratfor imple-
ments an extended layout rule, Prolog has varying precedence of operators. No
language that I know of combines them all together. In some cases even the de-
signers of such solutions regretted their decision because of the problems it added
to the language specification and implementation. I believe that most of the above
bugs/features were added by a combination of creeping featurism and lack of at-
tention to their implications. They increase the complexity of the language in a
number of ways and add confusion to an already complex language.

C.2 Language ambiguity and lack of LR(k)ness

There are many ambiguities in the language. Some of rules for resolving the
ambiguities are given in the analytical description of the language, others should
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be deduced from the as yet unpublished standard prelude. Yet the fact that 33
disambiguating rules were needed to resolve the ambiguities in a yacc description
of the languagemeans that it will be very difficult to guarantee what language will be
recognised by the parser. In particular the function application production although
ambiguous has no operand associated with it. Thus in a yacc implementation
disambiguating rules have to be specified for every language token or literal that
might be used to introduce a new expression.

In addition to the ambiguities presented above the language described in the
appendix turns out not to be LR(k). Qualifiers can start with either a pattern or
an expression and both patterns and expressions can be arbitrarily long lists of
variables. Thus an arbitrary number of tokens needs to be scanned before the
list can be reduced to a pattern or an expression. This problem can be solved by
merging patterns and expressions together. This however places an extremely high
burden on the semantic analysis phase which would have to distinguish between
the two and verify that no illegal patterns or expressions were entered. As patterns
and expressions differ in a number of ways this method introduces a number of
problems.

C.3 Conclusions

The syntactical description of the Haskell programming language is from a number
of different aspects deficient. This makes an implementation of the language
very problematic or even impossible. A solution would be a radical redesign
of the language. The new language would have to be designed with an eye
towards its implementation, avoiding unproven language concepts and irrelevant
baroque features. According to the preface of the Haskell report, Haskell is to
be a standard functional programming language. Experimentation with language
features irrelevant to the field of functional programming should not be part of such
a standard.

72



Appendix D

Error Log

On February 14 when I started testing I decided on a clean room strategy. All
errors found during testing would be logged. The resulting log should provide a
base for measuring the relibility of the project, relative difficulty of various parts
and provide various software metrics.

Wed Feb 14 20:44:52 1990 Lexical analysis File scan.l
one character reserved operators were not treated specially and I relyied on
the default rule to match them. Other rules preceded the default rule and
they were used.

Thu Feb 15 09:18:44 1990 Lexical analysis File scan.l
Some one character reserved operators were treated as variable operators.
The problem was finaly traced to a - appearing in a character class. This was
correctly interpreted by lex as a range, whereas I mean it as a literal.

Sat May 19 16:56:22 1990 Lexical analysis File scan.l
In routine process string when a backslash escape was found a check for a
string gap was made. If that test failed process escape( was called. I forgot
to put the character back into the stream.

Sat May 19 17:19:01 1990 Lexical analysis File scan.l
Escape sequences were parsed wrongly. I had used a line of the form:

while (c = input() && isdigit(c))

which was parsed as:

while (c = (input() & isdigit(c)))
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Sat May 19 17:29:56 1990 Lexical analysis File scan.l
In transllating hexadecimal escape sequences into a number I forgot that c
- ’0’ did not produce the right result for hex. I did not even check of upper
and lowercase hex escapes.

Sat May 19 17:36:04 1990 Lexical analysis File scan.l
The conversion from hex character to hex value was done by finding the
index of the character into a table. Instead of subtracting the table from the
index I subtracted the index from the table.

Sat May 19 17:48:57 1990 Lexical analysis File scan.l
Did not handle the “consume longest lexeme” rule between the ASCII es-
capes SOH and SO.

Sat May 19 18:03:37 1990 Lexical analysis File scan.l
The code for sting gaps did not take into account that the whitespace before
and after the newline was optional.

Sat May 19 18:41:58 1990 Lexical analysis File scan.l
Had forgotten to include space in the characters that are allowed in strings.

Sun May 20 17:08:58 1990 Lexical analysis File scan.c
The get next character macro returned 0 if a character was put back into the
stream. I was zeroing the memory to indicate that the pushed back character
was taken away and then was returning the same memory. A temporary
variable was forseen and initialised to the value of the memory before it was
zeroed, but was not returned.

Sun May 20 17:13:12 1990 Lexical analysis File scan.c
Forgotten to put a case for EOF in the switch statement. EOF was passed to
the parser as -1 whereas the parser expects 0.

Sun May 20 17:20:16 1990 Lexical analysis File scan.c
Used the operator sizeof within a macro to instead of strlen for efficiency, so
that it would be calculated at compile time. Did not think that it returns one
more than strlen.

Sun May 20 17:25:57 1990 Lexical analysis File ctype.ctc
Had not included the character at in the list of allowed escapes

Sun May 20 17:58:05 1990 Lexical analysis File ctc.bat
The ctype compiler generates two macros that do nothing, isnone and isany.
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These macros discard their arguments and thus did not produce the side effect
needed by scan.

Sun May 20 18:17:32 1990 Lexical analysis File scan.c
The (-) varop did not work. When save was called to put it in the symbol
table c did not contain ’-’ as was required by save.

Sun May 20 18:23:48 1990 Lexical analysis File scan.c
Did not put the character after the open bracket taken to examine if it meant
the start of a varop back to the input stream if the examination proved
negative.

Sun May 20 18:36:33 1990 Lexical analysis File scan.c
Did not parse the sequence (- foo) as four tokens. Attempted to parse it as a
varid. Modified for the special case of a -. Not sure if I need to handle any.
If so then lookahead is needed. Arghh!!!

Sun May 20 18:36:33 1990 Lexical analysis File scan.c
The test for conop needed to unput one character and set c to :.

Sun May 20 18:47:08 1990 Lexical analysis File scan.c

The hypothesis of Sun May 20 18:36:33 1990 was indeed true. Open bracket
symbol does not imply tVARID. The prelude contained (backslash x if x ...).
Added lookahead. Did not fix tCONID in the same way. Can there be a case
(:+ something)?

Sun May 20 20:57:56 1990 Lexical analysis File scan.c
The layout rules used recursive calls to yylex in order to get the next token.
The recursive call invoked the layout rules recursively and resulted in tokens
being pushed by reverse order into the ring buffer!

Sun May 20 22:17:13 1990 Lexical analysis File scan.c
When the ring buffer is empty, topyylex returns yylex. Yylex may fill the
ring buffer, but it is too late. I will try to fix it by a hack in topyylex (call
yylex and then compate the ring?). I feel it is a hack.

Sun May 20 22:36:55 1990 Lexical analysis File scan.c
The fix Sun May 20 22:17:13 1990 did not work. A detailed analysis showed
that the correct operation was to call yylex and then swap the token returned
with the token in the ring, returning the token in the ring.
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Sun May 20 22:42:53 1990 Lexical analysis File scan.c
A very complicated attempt at optimising the copying of yylval in topyylex
was wrong. The idea was not to copy yylex when the token has value
less than 255. When that involved swapping the two tokens the sequence
got very complicated because depending on their values sometimes yylval
became clobbered and sometimes not. The correct series of tests is probably
more expensive than the actual copy, so the optimisation was removed.

Sun May 20 22:52:43 1990 Lexical analysis File scan.c
Topyylex is still wrong. As done the ring will never empty because it always
gets another token before examining the ring. Modified to get another token
only when the ring is empty. Afterwards it checks if a sidefect of getting
the token was filling the ring and performs the swap operation or returns the
token.

Sun May 20 23:03:50 1990 Lexical analysis File scan.c
The recursive calls to yylex and the filling of the ring are not working
correctly. The approach of using the lexical analyser to eat white space
when looking for the next lexeme is probably not the best. Trying new
approach to have a mini scanner to eat white space.

Sun May 20 23:25:38 1990 Lexical analysis File scan.c

It may be that some of the problems between Sun May 20 20:57:56 1990

and Sun May 20 23:03:50 1990 may have been imeagined bacause of wrong
input data. The example used to test layout had been typed in long time
ago and looked like the example in the April Haskell report. In fact it had
many subtle differences which made the scanner look buggy. (When looking
at the scanner output I was reading against the Haskell document, not the
actual test data.) Closer examination revealed that the example had changed
between the September report and the April one!

Sun May 20 23:44:51 1990 Lexical analysis File scan.c
Forgot to take into account the fact that a single line may terminate a number
of braces. This is expressed as a while loop, but because yylex is called I
have too keep state and use a goto unindent. Argh!!!

Sun May 20 23:54:09 1990 Lexical analysis File scan.c
Initialising the column where module appear to -1 when it appears it too late
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because a semicolon whil alread have been inserted when the newline comes.
(if there is a newline before module). Fixed by initialising the indentstack
to have a -1 entry in it. Also forgot to update the state on EOF. Thus the
program was looping outputing semicolons.

Mon May 21 00:51:37 1990 Lexical analysis File scan.c
Did not update state after outputing a ’;’. This was the real reason for the
looping.

Wed May 30 15:26:02 1990 Parsing File makepr.pl
The procedure that prints out structures checked to se if the pointer to the
structure was null, but did not return if it was. Instead it could call itsself
recursively.

Wed May 30 18:38:39 1990 Error reporting File error.c
The arguments passed to sscanf were not passed by reference.

Wed May 30 18:39:34 1990 Error reporting File error.c
A brace was missing form a nested if. Consequently the wrong else was
chosen.

Wed May 30 18:40:10 1990 Testing File testparse.c
The symbol table was not initialised.

Thu May 31 10:11:00 1990 Parsing File parse.y
The C code for module did not set the dollar dollar variable. This was then
set by default to NULL.

Thu May 31 10:26:10 1990 Lexical analysis File scan.c
Forgot to unput the first non digit character read after an integer.

Thu May 31 18:59:05 GMT 1990 Parsing File fix.c
The test for differentiating between constructor operators and variable op-
erators was wrong. Constructor operators start with upparcase and variable
operators with lowercase, not the opposite.

Fri Jun 01 14:12:00 1990 Parsing File fix.c
Had assignments for constructor and variable operators swapped around.

Fri Jun 01 14:36:08 1990 Parsing File fix.c
- does not qualify for a symbol and was thus termed as a constructor.
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Fri Jun 01 16:15:25 1990 Parsing File parse.y
After adding the open brace in the module derivation, forgot to remove it
from the body derivation.

Fri Jun 01 17:08:42 1990 Error management File error.c
When an error could not be located in the error database the file numebr and
file name got corrupted. The error number was passed to printf, although no
corresponding

Fri Jun 01 21:55:50 1990 Parsing File parse.y
Data declarations were not parsed because type variables were expected. The
lexical analyser did not differentiate type from normal variables and thus a
syntax error occurred.

Fri Jun 01 23:43:51 1990 Lexical analysis File scan.c
If a closing brace was needed at end of file the end of file character was not
pushed back in the stream.

Fri Jun 01 23:53:41 1990 Lexical analysis File scan.c
After moving to a new file failed to initialise input system.

Sat Jun 02 00:05:40 1990 Lexical analysis File scan.c
Did not initialise indentation for layout rules after the ‘interface’ keyword.

Sat Jun 02 01:06:01 1990 Lexical analysis File scan.c
Did not invoke the layout rule after newlines that terminate line comments
(–).

Sat Jun 02 01:39:32 1990 Parsing File parse.y
The rule for patterns expected an explicit ’-’ instead of varopl6 as it is
renamed by fixity declarations.

Sat Jun 2 16:02:17 GMT 1990 Lexical analysis File scan.c
Did not initialise the ring buffer.

Sat Jun 2 16:04:05 GMT 1990 Symbol table File symtab.c
The printf specification for creating unique identifiers missed the final d for
the

Sat Jun 2 16:26:26 GMT 1990 Lexical analysis File scan.c
Tried to interpret 1..2 as a floating point number.
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Tue Jun 5 22:20:57 BST 1990 Symbol table File symval.c parse.y
Did not create symbol values for most symbols. This cause the macro that
checked symbol values to crash.

Tue Jun 5 23:30:12 GMT 1990 Lexical analysis File scan.c
Erroneouslycheckd for the symbol value of converted VAROPS (in brackets).
This made it return the tokval of the assigned fixit instead of varop.

Wed Jun 6 22:59:10 BST 1990 Parsing File parse.y
Used wrong tag when initialising class structures.

Fri Jun 8 19:07:17 BST 1990 Interpreter File interp.c
Forgot to add suspensions in function applications Checked the value of a
variable in the environment after checking if it was a builtin.

Fri Jun 8 19:22:53 BST 1990 Interpreter File interp.c
Did not evaluate the value of a variable in the environment when it was
found.

Fri Jun 8 21:11:45 BST 1990 Interpreter File interp.c
Did not pass the name of the unitialised variable in the error function.

Fri Jun 8 21:19:58 BST 1990 Interpreter File testparse.c
Did not initialise the primitives

Fri Jun 8 21:23:43 BST 1990 Lexical analyser File symval.c
Did not check that tokens whose tokval was

Fri Jun 8 22:26:00 BST 1990 Interpreter File interp.c
Used the wrong variable to get the builting name. Used the result of the
environment search (which was NULL) instead of the original expression.

Fri Jun 8 22:31:28 BST 1990 Interpreter File prim.c
The tests used in the assertions to verify that the types passed to primitives
were correct used assignment instead of equality test.

Fri Jun 8 22:39:46 BST 1990 Interpreter File prim.c
The non-lazy primitives were not evaluating their arguments.

Sat Jun 9 21:41:27 BST 1990 Parsing File parse.y
Expressions did not allow for constructor operators Forgot to change the ’+’
for successor patterns to its infixl6 op.
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Sat Jun 9 22:35:08 BST 1990 Lexical analysis File scan.c
When checking for keywords and saving them, did not update yycolumn.

Sun Jun 10 15:23:54 BST 1990 Lexical analysis File scan.c
When a tab was found a wrong expression was used to incement the column
number.
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Appendix E

Trademarks

COMPAQ and COMPAQ 386/20e are trademarks of Compaq Computer Corporation.
Intel, 386 and iAPX386 are trademarks of Intel Corporation.

Microsoft and MS-DOS are trademarks of Microsoft Corporation.
Miranda is a trademark of Research Software Ltd.

PDP-11 and VAX are trademarks of Digital Equipment Corporation.
TeX is a trademark of the American Mathematical Society.

Unix is a registered trademark of AT&T in the USA and other countries.
All other trademarks are property of their respective owners.
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