A Dynam cal |l y Linkabl e G aphics Library

Diomdis D. Spinellis
Departnent of Conputing, |nperial College of Science and
Technol ogy, 180 Queens Gate, London SW 2BZ, U. K

March 1988

DRAFT

A Dynam cal |l y Linkabl e G aphics Library

Diomdis D. Spinellis
Departnent of Conputing, |nperial College of Science and
Technol ogy, 180 Queens Gate, London SW 2BZ, U. K

SUMVARY

The design issues behind the inplenentation of an efficient and
portable graphics library are discussed. A description of its
conponents is given and the constraints | eading to dynamc
linking are presented. Techniques allow ng the transparent
dynam c linking of library elenents are anal ysed and two

i npl ementations of a systemthat automatically creates
dynam cal ly linkable code are presented. The one inplenentation
is based on traditional UNI X tools and the other on the per
progranmm ng | anguage. The two inplenmentations are conpar ed.

KEY WORDS : Dynam c | i nking G aphics libraries Per

| NTRODUCTI ON

During the design of an interactive graphics pre- and post-
processor for a finite elenment analysis system the problem of
portably displaying the output on a wide variety of graphics

out put devi ces was encountered. The program initially, had to
run on | BM PC class machi nes running the MS- DOS operating system
In a latter stage it was ported to run under the UN X operating
system on Sun and m cr oVAX wor kst ati ons.

The programis used to inspect structures represented by wire
frames containing hundreds of elenents in two distinct phases.
First, before input to the finite el ement analysis program the
wire frame is examned in order to visually verify its form
After the analysis the programis used to inspect the distortions
suffered under specific |oads. The user may rotate the structure
in three dinensions, view specific parts of it, label its joints
and nmenbers and perform various other operations on it. The
interactive nature of the programand the range of machines it
was designed to operate on, made its design focus on a fast

i npl enmentation. The main program consi sts of about 7000 |ines of
code witten in the (1] progranm ng | anguage.

M5- DOS does not provide an application graphics interface and the
ROM Basi ¢ | nput Qutput System (BIOS)[2] that is available on

t hese machi nes does not support devices other than those
manuf act ured by the machine vendor. In addition the functions it
provides are mnimal. Typical functions could display a
character, set a point to a specified colour and set up the

DRAFT

2 D. Spinellis

screen for a particular graphics node. The inplenentation of nore
advanced commands using the BIOS would suffer fromthe overhead
of calling it for every point drawn. Sone experinmenting using its
functions denonstrated that the speed of a programusing it, was
clearly unacceptable for interactive use.

The use of a graphics platformlike GKS[3] or M crosoft

W ndows[4] was consi dered. GKS offers device i ndependent graphics
functions and would offer the portability desired. M crosoft
Wndows is a window oriented user interface. Applications witten
using the functions it provides are portable anong a range of
hardware as it is responsible for inplenenting the input/output
functions for a particular device. The use of those prograns was
not opted for, because they were not w dely avail abl e anong the
user base. Particularly the use of a Mcrosoft Wndows interface
woul d burden the application with one nore | evel of
non-portability to machi nes not running M5 DOS

THE LI BRARY APPRCACH

The initial approach to the problemwas the isolation of the
graphics functions fromthe main programin order to achieve
portability. In addition to that some useful, but not device
specific graphics functions were identified. Thus two function
libraries were created. The one consists of all device specific
functions and the other of device independent ones.

The criterion used to isolate the functions in those two groups
was mainly the efficiency with which a particular function could
be i npl emented using other device specific functions. Furthernore
devi ce specific functions should only do the absol ute m ni num
wor k that was device specific. Non device specific functions
woul d provide better interfaces. This was decided in order to
sinplify the inplenmentation of the graphics library on a w de
vari ety of graphics devices.

Using this criterion functions |ike drawa-1ine and

di spl ay-a-character were imedi ately put in the device specific
library. An exanple of a function that was put in the device
dependent library only because it could be inplenented very
efficiently in a device specific way was the crosshair function.
This function allows the identification of a screen point by the
intersection of two lines at right angles, covering the whole
screen. The inplenentation should be very efficient as this
function is usually driven by a nouse form ng a part of the user
interface. Efficient inplenentations for this function are device
specific as they can range from mani pul ati ng whole words, for the
horizontal line in bit mapped di splays, to invoking device
specific functions, as for the Tektronix[5] type displays.

Apart fromthe functions provided a nunber of gl obal variabl es
was also included in the device specific part of the library.
These specified various display characteristics such as the
screen size and aspect.

Al the portable library is witten in Cand its size is about
1500 lines. Sonme of the device specific libraries are witten in
C, but others have parts witten in assenbly |anguage. Their size

DRAFT

A Dynam cal |l y Linkabl e G aphics Libary 3

varies from 140 lines which is the library interfacing to the
graphics library provided by the conpiler vendor to 1300 |ines
which is the size of the EGA[6] interface library. Up to now 12
different |ibraries have been devel oped.

Functi ons provided
The device specific part
The functions that the device dependent |ibrary provides are

listed in table 1. Table 2 outlines the global variables that are
made avail abl e.

Nane Functi on
cls Cl ear the screen.
di sp Di splay a given graphics page.
gnode Set graphics node in effect.
gpage Set graphics page to be used for output.
gr poi nt G aphics cross hair pointer.
hor xor I nvert a character row.
l'ine Draw a |ine.
| ocat e Change the cursor position.
pl ot Pl ot a point on the screen
poi nt Return the colour of a point on the screen.
scr_get Save the screen buffer to nenory.
scr_put Restore the screen buffer from nenory.
t node Set text node in effect.
W n_get Save an area of the screen to nenory.
W n_put Restore an area of the screen from nenory.
Wi n_size Return nenory required for a screen area.
wr t Wite a character attribute on the screen.
wtrep Wite a character a nunber of tines.
Table 1
Nane Functi on
aspect The screen aspect ratio.
cols The screen size in columms.
r ows The screen size in rows.
scr_can_do The availability of the scr_ functions.
scr _pl anes The nunber of screen pl anes.

scr_si ze The size of one screen plane in bytes.
xpel s The nunber of pixels in the screen x coordinate.
Xsi ze The width in pixels of one character.
ypel s The nunber of pixels in the screen y coordinate.
ysi ze The height in pixels of one character.

w n_can_do The availability of the win_ functions.

DRAFT

4 D. Spinellis

Tabl e 2

Not all functions are supported by all hardware specific
libraries. Some may be just stubs in a particular inplenmentation.
Where this can affect the program function, variables specify
whet her a function is available for a specific configuration.

The functions were initially designed as part of the three

di mensi onal view program and based on the functions provided by
the I1BMPC BICS. The interface design strongly reflects this
fact. The function interface is efficient as used in that program
and relatively easy to inplenent in machines with PC BI OS
support. For efficiency reasons paraneters that tend to stay the
sanme between a nunber of calls to functions (such as the output
screen page) are specified by a different function in order to
avoi d the argunent passing overhead. On the other hand paraneters
t hat woul d change fromone function call to another are argunments
of one function in order to mnimse the function calling
overhead. Thus the sequence of calls needed for drawing a line in
a specific col our are not

Set Dr awCol our (col our) ;
Set Dr awi ngFunction(copy) ;
MoveTo(x1, y1)

DrawTo(x2, y2) ;

A single function provides this interface :
line(x1, y1, x2, y2, colour) ;

The interface is thus | ess general and focused towards a specific
application. However the library has been successfully used in

t he design of other packages w thout any serious problens.

A nore serious design error is the nane specification of the
routi nes which results in considerable name space pollution in
flat nam ng progranmm ng systens such as the C progranm ng

| anguage. The choice of some function nanes can al so be descri bed
as unfortunate (this applies to the device independent |ibrary as
wel |).

The portable part

The functions that are currently provided by the device
i ndependent library are listed in table 3.

Nane Functi on
accept Get user input at a specific screen position.
circle Draw a circle.

displayf D splay formatted data at a specific screen position.
hor char Repeat a character horizontally on the screen.
hpi ck Pick an itemfroma horizontal nenu, providing help.

DRAFT

A Dynam cal |l y Linkabl e G aphics Libary 5

lineclip Draw a line, clipping parts outside screen limts.

npi ck Pick an itens froma table, providing help.
t ext Draw text using vector fonts.
userin Get input formthe user allowng Iine editing.
ver char Repeat a character vertically on the screen
vpi ck Pick an itemfroma vertical nenu.
wcl ose Cl ose a w ndow.
wdel Del ete a wi ndow fromthe screen
wdr ag Change the position of a w ndow.
w eave Leave a w ndow.
wopen Open a new w ndow.
wscr ol | Scroll the contents of a w ndow.
wsi ze Change t he wi ndow si ze.
wuse Use a w ndow.
Table 3

No gl obal variables are defined by the |ibrary. The functions
provided rely on functions fromthe device specific library. The
di chotonmy of the two |libraries was established gradually and in
the early phases of the devel opnent functions tended to mgrate
fromone to the other, as it was tried to create a bal ance

bet ween efficiency and ease of inplenentation.

The w ndowi ng functions provided, forma rather crude w ndow ng
system and have not been extensively used. Wth the constantly

i ncreasing use of many different wi ndow ng environnents a
portable windowi ng library is under consideration.

Two famlies of functions provide character output. Raster fonts
are used for speed and vector fonts for efficiency. Naturally al
user interface functions such as nmenus and input procedures use
the raster font.

Initial inplenmentation

The initial inplenentation of the graphics library was in the
formof two M5-DOS object libraries. The programwas |inked with
t he device independent |ibrary and one of the device dependant
ones. No reconpilation was needed for different devices. This
met hod had the drawback of producing a different executable
nodul e for every devi ce.

DYNAM C LI NKI NG

Desi gn constraints

As the nunber of devices for which libraries were created

i ncreased the drawbacks of the separate |inking becane apparent.

More and nore different executable prograns had to be stored,
di stributed and nmai ntai ned. The testing of those prograns becane

DRAFT

6 D. Spinellis

difficult as a different |inking session was needed for every
execut abl e nodule. At that point the quest for alternative
sol uti ons began.

For producing an alternative nmethod the follow ng constraints
wer e set

a) One executabl e programshould be able to run on any graphics
har dwar e confi guration

b) The original, library based, interface should still be a valid
I i nki ng option.

c) No changes to the program shoul d be required.

d) The sol ution should draw upon the resources of the conpiled
devi ce specific libraries.

e) No performance penalties should be paid.

f) The solution should be part of the application program and not

part of the operating system or environnent.

In addition to the constraints noted above it should be noted
that the operating system does not offer any support for shared
or dynamcally linked libraries (it is a feature of OS/ 2 though),
no nenory protection is available and code is stored in the sane
type of nenory as data.

Modul e deconposition

Constraint a) hinted the solution of a device specific driver
that woul d be | oaded by the application programat run tinme. Due
to constraints f) and e) a special output format that woul d be
interpreted by a filter or a resident device driver was not opted
for.

The constraints b), ¢c) and d) set the franework for the foll ow ng
solution : The library code was divided into two parts. A stub
part would resolve all references during the Iinking phase by
provi di ng dumry procedures and gl obal variables. These procedures
woul d, when called, initialize the driver by |oading device
specific code, replace the reference to thenselves with a
reference to the real routine and repeat the original call.

The format of the device specific code is ordinary relocatable
executable code in the sane fornmat as that used by executable
prograns. The operating system provides a function to |oad such a
file into nmenory performng relocation of entries. The first
items inthe file are the locations of all functions and gl obal
vari ables. That file could be generated just by |inking one of
the device specific libraries with a snall assenbly program
containing the initial table and references to all the functions.
Thus no specific linking tools needed to be inplenented.

DRAFT

A Dynam cal |l y Linkabl e G aphics Libary 7

Call inplenentation

The re-execution of a function call after patching the original
code with a new address was tricky and the end code is not
sonet hi ng one should be proud of. The code is highly conpiler
specific, but it survived three consecutive rel eases of the
conpiler. The exanple that follows is the stub function for cls.

voi d cl s(ab)

int ab ;
{
char ** caller = (char **)((char *)&b - sizeof(char *)) ;
if(! init _drv) _init() ;
*(char **)(*caller - sizeof(char *)) = addr[1l1] ;
*caller -= sizeof(char *) + 1 ;
}

The argunent ab is not an argunment that is passed to cls. It is
used to find the location of the return address in nenory. As

ab is the last argunent pushed onto the stack before the function
call (or at least that’'s what the conpiler thinks) its address is
one pointer location after the return address of the function.
Having the return address into the variable caller, the need for
driver initialisation is checked. If initialisation is needed it
is performed. After initialisation the addresses of all external
references are placed in the array addr. Here addr[11l] is the
address of the cls routine in the code that was | oaded. The next
line sets the address used by the call instruction to the address
of the real cls routine and after that the return address is
adjusted so that the call wll be repeated. Fromthen on every
tinme that instruction is encountered the real cls function wll
be called instead of the stub one.

Static data inplenmentation

Havi ng sol ved the problem of integrating the graphics functions
into the main instruction stream one nore probl em needed sol vi ng.
That was the provision of data space for the graphics functions
to use. As the graphics functions were separately linked fromthe
mai n program no information was avail able on the nenory size
requi red by themand thus the nenory references to the main
prograns static variables and those of the graphics functions
over | apped.

The way this problemwas solved was by noticing that because the
graphics functions were not |linked wth any other code the only
static data they required was allocated at the start of the DATA
segnent. Furthernore by explicitly initialising all variables to
a value the additional conplication of catering for data in the
BSS segnent was elimnated. Thus after linking all different

devi ce dependent drivers the |inker output maps were exam ned,
the | argest anmobunt of static data required was noted and anot her
object nodule to be Iinked to the main programwas created. That
nodul e contai ned a new NULL segnent (which is the segnent

DRAFT

8 D. Spinellis

i mredi ately before the DATA segnent) whose contents were the ones
supplied by the conpiler (library copyright nessage and a
checksum) plus enpty space for the graphics functions static

dat a.

As the maxi mum anmount of static data required by a function was
about 30 bytes this was no an inefficient inplenentation. It is
not very clean however, as it includes sone code fromthe
conpiler runtine library.

Pr ot ot ype sol ution

Wth the way to inplement the dynamcally |inkable device drivers
desi gned and tested, a way was needed to automatically create al
the nodul es required for such a library. Specifically such a
system shoul d take a library description and a set of device
dependent |ibraries as input and produce code and data object
file stubs and dynam cally Iinkable device driver files as output
as seen in figure 1.

Code
Interface

Library
description

Data
Interface

Dynalib
Generator

Graphics
Libraries

Driver
Files

Figure 1

It was decided to use standard UNI X tools to create such a
system The tools used were awk[7] and sed[8]. The library
description file format was defined to be conposed of two parts.
In the first part the various |ibraries are described. For every
device specific library, its nane and the location of a file that
can be used to resolve are references are given. The nanme, is
used for namng the driver file. Following that |ist cones the
word ENDLIB and then a list of all synbols that conpose the
library. After each synbol cones its type which can be one of
‘“word dword gword far’. These indicate the size of the synbol if
it is a variable, or that it is a function. Currently pointers
are not supported. The following is a fragment fromthe ori gi nal
specification file :

cga lcga.lib
ncga Incga.lib
ega lega.lib
herc lherc.lib
vga lvga.lib
wy700 wy700.1ib

DRAFT

A Dynam cal |l y Linkabl e G aphics Libary 9

ENDLI B

aspect gword
cols word
scr_pl anes word
cls far

disp far

This file is input to an awk script. The awk script generates an
assenbly file, which when linked with a particul ar graphics
library will create a driver file, the stub code file to be
linked with the main programin C and a conmand file to be
executed in order to do the actual |inkings required. The command
file also contains instructions that will pipe the output from
linking the particular driver file through a sed script in order
to generate the data binding.

Three awk arrays are used to store the nanes and types of al

vari ables referenced in the library description file. For every
function found in the file a stub function is output in the C
file. If a variable reference is encountered, a gl obal variable
definition for the particular size is emtted and the nane of the
variable is stored in an array used for the particular type. This
is a code fragnent that generates references to double

vari abl es :

start == 1 && /[J+gword]]*$/ {
initgword[addr++] = $1 ;
printf "double % ; ", $1 >>cfile ;
I ni tgwords++ ;

}

The variable start holds state informati on needed for awk to know
whi ch part of the library description file it is processing. \Wen
the end of file is reached the code for the initialising function
I S gener at ed.

The initialising function finds the size of the driver and

all ocates nenory to store it using malloc. It then | oads the
driver code into nenory, initialises the pointer addr which
contains the addresses of all elenents to point to the correct
part of the driver and then outputs code to initialise the gl obal
variables in the stub nodule to the values found in the real
nmodul e. Again an exanple for the double variables follows :

if(initgwords)

for(i ininitgword)
printf " % = *(double *)addr[%] ; ",
initgword[i], 1 >>cfile ;

The assenbly file that is linked to a |library in order to produce
the driver file is generated on the fly. Every line that
specifies an entry is emtted with “extern ' perpended to it and
followed by a line ‘dd _nane’ where nane is the nane of the
function or variable.

DRAFT

10 D. Spinellis

The processing of the initial driver names and |ibrary
descriptions generates the command file that takes control after
this point is reached. That conmand file |inks the assenbly file
generated with each library and renanes the result to the driver
name specified. The |inker map output is passed through sed in
order to create an assenbly file that will create a NULL segnent
with extra length equal to the maxi num data segnent |ength
encountered. The sed command that does this is :

/N [0-9A-F]*H [0- 9A-F] *H [0- 9A-F] *H _DATA/ s/~ [AH *H [AH] *H
\([AH *H).*$/IF \1 GT DATALEN

DATALEN = \1

ENDI F

I'p

For every data segnent length is encounters it generates a
sequence of conmands of the type :

IF length GI' DATALEN
DATALEN = |l ength
ENDI F

where length is the length of the particular data segnent. This
sequence i s recogni sed by the macro assenbler and as a result at
the end of the final sequence DATALEN is set to he maxi mum | ength
required.

Uni fied solution

From t he above description it is evident that the whol e system
used to generate the drivers although working is not a good
exanpl e of nice code. Its interfaces are unclear and much of the
work is done in an non-obvious and highly invol ved way. Although
the systemwas used for a period of six nonths in order to
devel op nore screen drivers the author always felt that a better

i npl enent ati on was needed.

During February 1988 Larry Wall rel eased on the USENET the source
for a programm ng | anguage cal led perl (Practical Extraction and
Report Language)[9]. According to the manual page perl was
supposed to conbine the best features of C, sed, awk and sh. It
was felt that perl was an ideal |anguage to inplenent this
system The rewite process was easy and at the end the three
(plus one internediate) file original systemwas reduced to one
perl script. The size of the systemwas reduced by 25% and the
execution speed increased by 31%

The nore inportant results were gains in the overall quality of
the system By putting the whole systeminto one file its
interfaces becane clear and the way it functioned obvious. This
may seem as a paradox, taking into account the rational e behind
nmodul ar i npl ementati ons. The reason why the system broken into
parts was worse than one program is that the breaking into parts
was not directed by a functional deconposition, but by deciding

DRAFT

A Dynam cal |l y Linkabl e G aphics Libary 11

what parts of the system could be managed by a particul ar tool.
The maxi mal i st design phil osophy behind perl clearly helped to
inprove the quality of the finished design

CONCLUSI ONS

Al though the initial design of the library was designed to be
used on a specific hardware device and by one program over the

| ast two years this has changed. Currently 12 different output
devi ces or protocols are supported ranging fromthe PS/ 2 VGA
adapter to an X Wndowi ng Systen| 10] interface. The prograns that
have used it are a three di nensional perspective view system a
star chart display program and a specialised CAD program

The library worked well for the scope it was designed for. It
provided a portable interface across nmany hardware
configurations. The dynam c |inking capability was found to be
easy and efficient to use and resulted in better and nore
portable prograns. Wth the ever increasing use of w ndow ng
systens the library design has started to affect the usability of
the prograns that depend on it. User friendliness and conformance
with a particular wi ndow ng, presentation and user interface
standard are conprom sed in order to increase portability. This
is an issue that has to be addressed in the future and there are
al ready steps towards a sol ution.

Dynam c linking is an interesting possibility in application
areas with diverse equi pnent and/ or user requirenents. The

techni que described is alnost totally transparent to the
application programmer. It can be extended to all ow users or OEMs
to create their own drivers. Currently experinentation is being
made with input |ibraries and | anguage specific drivers.

REFERENCES

1. B. W Kernighan and DD M Ritchie, ‘The C Progranmm ng
Language’, Prentice-Hall, 1978.

2. ‘'1BM Personal Computer, Technical Reference, First Edition
(Revi sed May 1983).

3. F. R A Hopgood and D. A Duce, ‘Gaphics Standards - The
Current State’, August 1986.

4. Mcrosoft Corporation, ‘Mcrosoft Wndows, Operating
Environnent, Users Guide’, 1985.

5. ‘“Tektronix, 4014 and 4014-1 Conputer Display Termnal’, 1974

6. ‘I1BM Enhanced G aphics Adapter, Technical Reference Manual’,
August 2, 1984.

7. A V. Aho, B. W Kernighan and P. J. Winberger, ‘Awk - A
Pattern Scanning and Processi ng Language, (Second Edition)’,
Septenber 1, 1978.

8. L. E MMhon,®SED - A Non-interactive Text Editor’, August
15, 1978.

9. L. wll, “Perl - Practical Extraction and Report Language’,

March 15 1988.

DRAFT

12 D. Spinellis

10. J. Gettys, R Newman and T. D. Fera, ‘Xlib - C Language X
Interface’, Novenber 16, 1986.

APPENDI X
The dynami cally linked library generator in per

@REME("
@erl %.bat % %R 9B % 95 % 9T 9B 9B
@nd ") if O ;

Create a driver interface

(C) Copyright 1987,88 Diomdis Spinellis. Al rights reserved.

See driver.doc file for info.

The fast option produces only the .drv files and skips the conpiling
process. It can be used when only the code of a driver has changed.

Cenerate assenbly batch and C file
Pass 1 of nkdrv (create a driver)

HH OHHHFHH

$#ARGY == 0 || die "$0 : Usage $0 file" ;

open(infile , "< .($drivername = $ARGV[O0])) || die "Unable to open $drive
open(asnfile , "> .($asnfilenane = ($ARGV[O0]. .asm))) ;
open(cfile , "> .($cfilenane = ("¢’ .$ARGV[O0]. .c")))
print asnfile "
; Automati caly generated assenbly file
; Prohibit null pointer assignnents by |eaving space for NULL sgenent
NULL SEGVENT PARA PUBLI C ' BEGDATA
db 37h dup(?)

pri nt cfile "
/*Automaticaly generated C file */

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

#i ncl ude <nmal |l oc. h>
#i ncl ude <errno. h>

#def i ne NULLLEN 0x37

static int init_drv = 0 ;
static char **addr
static void drv_init()
extern int errno ;

Process all the library info

while(($_ = <infile> && ($_ ne "ENDLIB ")){
($name, $lib) = split ;
push(nanes, $nane) ;
push(libraries, $lib) ;

DRAFT

A Dynam cal |l y Linkabl e G aphics Libary 13

}

Check for ECF

if($_ ne "ENDLIB "){
unli nk $asnfil enanme, $cfil enane ;
di e ' EOF reached before ENDLIB

}

Process external synbols
while(<infile>){
($nane, $distance) = split ;
push(externs, sprintf(" extrn % : % ", $nanme, $distance)) ;
printf asnfile " dd % ", $nane ;
Have the caller call the new function and redo the cal
i f($distance eq '"far’){
printf cfile "
voi d %s(ab)

int ab ;
{
char ** caller = (char **)((char *)&b - sizeof(char *)) ;
if(! init_drv) drv_init()
*(char **)(*caller - 4) = addr[%] ;
*caller -=5 ;
}
", $nane, S$addr++ ;
} elsif($distance eq "word’){
Store variable occurances in an array to create init()
$i nitword{ $addr++ } = $nane ;
printf cfile "int % ; ", $nane ;
$initwords = 1 ;
} elsif($distance eq 'dword’){
$i nitdword{ $addr++ } = $nane ;
printf cfile "long % ; ", $nane ;
$initdwords = 1 ;
} elsif($distance eq 'gword’){
$i nitgword{ $addr++ } = $nane ;
printf cfile "double % ; ", $nane ;
$initgwords = 1 ;
}
}

The end of the cfile (Driver initialisation part)
printf cfile’
static void drv_init()
{
FILE *f ;
int codelen, flen
i nt headerlen ;
char *codep
uni on REGS srv ;
struct SREGS segs ;
static char *nanme = "%.drv" ;
struct {

DRAFT

D. Spinellis

int segnem ;
int reloc ;
} pblock , *pblockp = &pbl ock;

init_drv++ ;
/[* Cal culate Il ength of code */
if((f = fopen(nane,"rb")) == NULL){

perror("Erron in opening driver file %.drv")
exit(2) ;

}

fseek(f, 8, 0) ;

fread(&eaderl en, sizeof(int), 1, f)

fseek(f, O , 2) ;

flen = (int)ftell(f)

fclose(f) ;

codelen = flen - headerl en*16

if((codep = malloc(codelen + 16)) == NULL){
perror("Qut of menory for driver storage") ;
exit(2) ;

[*Al'lign codep on a paragraph boundary and zero offset*/
codep = (char *)((long)(FP_SEE codep) +(FP_OFF(codep) >>4) +1) <<16)
/[*Load overl ay*/

srv. h.ah = Ox4b ;
srv. h.al = 0x03 ;
srv.x.dx = FP_OFF(nane)

segs.ds = FP_SEE nane) ;
pbl ock. segnem = pbl ock.rel oc = FP_SEE codep)
segs. es = FP_SE(pbl ockp) ;
srv. x. bx = FP_OFF(pbl ockp)
i ntdosx(&srv, &srv, &segs) ;
if(srv.x.cflag){
swi tch(srv. x.ax){
case 1 :
errno = ElI NVAL ;
break ;
case 2 :
errno
break ;
case 8 :
errno
break ;
def aul t
errno = EZERO ;
break ;

ENCENT ;

ENOVEM ;

perror("Error in |loading driver")
exit(2) ;
}

addr = (char **)(codep + NULLLEN)
$dri ver nane, $drivernane ;

DRAFT

A Dynam cal |l y Linkabl e G aphics Libary

Initialize variables (if neeeded)
if($initwords){
whi | e(($address, $nane) = each(initword)

15

) {
printf cfile " % = *(int *)addr[%] ; ", $nane, $address ;

}

}
i f($initdwords){
whi | e(($address, ?nane) = each(initdword)){

printf cfile " % = *(long *)addr[%] ; ", $nanme, $address ;

}
if($initgwords){
whi |l e(($address, $nane) = each(initgword)){

printf cfile " % = *(double *)addr[%] ; ", $nanme, S$address ;

}
}

print cfile " } "

print asnfile "

NULL ENDS

_DATA SEGVENT WORD PUBLI C ’ DATA
“DATA ENDS

_BSS SEGVENT WORD PUBLI C ’ BSS'

“BSS ENDS

CONST SEGVENT ~ WORD PUBLI C ’ CONST’
CONST ENDS

DGROUP GROUP NULL, DATA, BSS, CONST

for($i = 0 ; $i <= $#externs : $i++){
print asnfile $externs[$i] ;

print asnfile "

public __acrtused ; To resolve external refs
__acrtused = 9876h ; Funny val ue not matched by Cv
END

cl ose cfilg X
cl ose asnfile ;

system (" masm, '/M', $asnfilenanme, ;')

$datalen = 0 ;

for($i =0 ;’$i < $#nanmes ; $i++){
if($libraries[$i] =~ /.[IL][i11][Bb]/){
$command = sprintf ('link /MAP /NO %, %, con, %s|"’

} else {

DRAFT

$dri ver nane,

16 D. Spinellis

$command = sprintf ("link /MAP /NO %+%, %, con;|’, $drivernane

open(|inkout, $command)
whil e(<linkout>){
if(/_DATA){
@lataline = split(/[H +/ ;
if(hex($dataline[3]) > $datalen){
$dat al en = hex($dataline[3]) ;
}

}

close(|inkout) ;
unlink("/lib/’.$nanes[$i]. .drv’ ;
rename($nanes[$i].’.exe’, '/lib/’.$names[$i]. .drv’)

open(dasnfile, '>d .$drivernane.’.asnm)
print dasnfile "
NULL SEGVENT PARA PUBLI C ' BEGDATA
db 8 dup(0)
db "C Library - (C) Copyright Mcrosoft Corp 1986
db 01fh,0,0,0
db $datal en dup(?)

NULL ENDS
DGROUP GROUP NULL
END
cl ose(dasnfile) ;
system ("masm, /M, 'd’.$drivernane, ;')
unlink ("/1ib/d .$drivernane.’.obj’ ;
rename ('d .$drivernane.’.obj’, "/lib/d .$drivernanme.’.obj’)
unlink $asnfilenane, 'd’.$asnfil enane, $drivernane.’.obj’ ;
exec ('cc’, '-zi', '-c¢’, '-Fol/libl/c’.$drivernane, '-AL', $cfilenane)
#This w Il never happen. | do an exec because perl and c2 can’'t coexi st

unli nk $cfil enane ;

DRAFT

